PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o196.
Published online 2009 December 19. doi:  10.1107/S1600536809053136
PMCID: PMC2980134

2-[2-(4-Nitro­phenyl)hy­dra­zin­yl­idene]malononitrile

Abstract

The title compound, C10H8N8, is close to planar (r.m.s. deviation from the mean plane = 0.118 Å). In the crystal, inversion dimers linked by pairs of N—H(...)N hydrogen bonds generate R 2 2(12) loops.

Related literature

For background to the use of the title compound as a dye, see: Tsai (2005 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o196-scheme1.jpg

Experimental

Crystal data

  • C10H8N4
  • M r = 184.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o196-efi1.jpg
  • a = 11.961 (2) Å
  • b = 5.8310 (12) Å
  • c = 14.569 (3) Å
  • β = 110.98 (3)°
  • V = 948.7 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.975, T max = 0.992
  • 1797 measured reflections
  • 1712 independent reflections
  • 1191 reflections with I > 2σ(I)
  • R int = 0.034
  • 3 standard reflections every 200 reflections
  • intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.172
  • S = 1.01
  • 1712 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809053136/hb5262sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053136/hb5262Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Experimental

A hydrochloric acid solution (6 ml) of p-toluidine (1.07 g, 0.01 mol) and an aqueous solution (3 ml) of sodium nitrite (0.72 g, 0.0105 mol) were mixed and stirred at 273 K for 1h, followed by the addition of an aqueous solution (10 ml) of malononitrile (0.66 g, 0.01 mol) and further stirring at 273 K for 2 h. The resulting product was filtered and washed with water, dried, and recrystallized from ethanol to give the title compound as yellow crystals (yield; 78%, m.p. 409 K). Yellow blocks of (I) were obtained by slow evaporation of an ethyl acetate solution.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C—H = 0.93, 0.95 and 0.96 Å for aromatic, methine and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of (I) showing 50% displacement ellipsoids.
Fig. 2.
The packing for (I).

Crystal data

C10H8N4F(000) = 384
Mr = 184.20Dx = 1.289 Mg m3
Monoclinic, P21/nMelting point: 409 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.961 (2) ÅCell parameters from 25 reflections
b = 5.8310 (12) Åθ = 10–13°
c = 14.569 (3) ŵ = 0.08 mm1
β = 110.98 (3)°T = 293 K
V = 948.7 (3) Å3Block, yellow
Z = 40.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1191 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
graphiteθmax = 25.3°, θmin = 1.9°
ω/2θ scansh = 0→14
Absorption correction: ψ scan (North et al., 1968)k = 0→7
Tmin = 0.975, Tmax = 0.992l = −17→16
1797 measured reflections3 standard reflections every 200 reflections
1712 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.1P)2 + 0.170P] where P = (Fo2 + 2Fc2)/3
1712 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2746 (2)−0.1077 (5)0.8662 (2)0.0513 (6)
N10.2481 (2)−0.2797 (4)0.8277 (2)0.0739 (8)
N20.5027 (2)0.3075 (4)0.92534 (19)0.0692 (7)
C20.4155 (2)0.2173 (4)0.91795 (18)0.0489 (6)
N30.24161 (17)0.1817 (3)0.96436 (14)0.0445 (5)
C30.3086 (2)0.1060 (4)0.91713 (17)0.0448 (6)
N40.26745 (16)0.3729 (3)1.01369 (14)0.0445 (5)
H4A0.32680.45421.01230.053*
C40.19927 (19)0.4484 (4)1.06931 (16)0.0406 (6)
C50.1092 (2)0.3138 (4)1.08016 (17)0.0455 (6)
H5A0.09070.17201.04920.055*
C60.0477 (2)0.3931 (4)1.13736 (18)0.0486 (6)
H6A−0.01280.30271.14450.058*
C70.0728 (2)0.6037 (4)1.18486 (17)0.0461 (6)
C80.1624 (2)0.7356 (4)1.17157 (18)0.0492 (6)
H8A0.18060.87811.20190.059*
C90.2249 (2)0.6599 (4)1.11451 (18)0.0468 (6)
H9A0.28450.75121.10640.056*
C100.0070 (2)0.6860 (5)1.2494 (2)0.0630 (8)
H10A−0.05120.57341.25020.094*
H10B−0.03270.82811.22410.094*
H10C0.06290.70911.31500.094*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0532 (14)0.0468 (15)0.0609 (15)−0.0056 (12)0.0288 (12)−0.0017 (13)
N10.0860 (18)0.0582 (16)0.0907 (19)−0.0204 (13)0.0476 (15)−0.0187 (14)
N20.0589 (14)0.0656 (16)0.0930 (18)−0.0156 (13)0.0393 (13)−0.0197 (14)
C20.0506 (15)0.0408 (14)0.0592 (15)−0.0008 (12)0.0244 (12)−0.0060 (12)
N30.0498 (11)0.0389 (12)0.0464 (11)−0.0051 (9)0.0194 (9)0.0010 (9)
C30.0432 (12)0.0398 (13)0.0539 (14)−0.0042 (11)0.0205 (11)−0.0008 (11)
N40.0467 (11)0.0377 (11)0.0545 (12)−0.0055 (9)0.0246 (9)0.0002 (9)
C40.0446 (12)0.0355 (12)0.0435 (12)0.0002 (10)0.0180 (10)0.0053 (10)
C50.0470 (13)0.0356 (13)0.0546 (14)−0.0059 (10)0.0190 (11)−0.0001 (11)
C60.0451 (13)0.0475 (15)0.0563 (14)−0.0072 (11)0.0219 (11)0.0033 (12)
C70.0430 (13)0.0475 (15)0.0468 (13)0.0037 (11)0.0149 (10)0.0057 (11)
C80.0549 (14)0.0373 (13)0.0556 (14)−0.0026 (11)0.0200 (12)−0.0017 (11)
C90.0495 (13)0.0367 (13)0.0578 (14)−0.0104 (11)0.0236 (11)−0.0005 (11)
C100.0573 (16)0.0739 (19)0.0632 (16)0.0063 (14)0.0281 (13)−0.0021 (14)

Geometric parameters (Å, °)

C1—N11.137 (3)C5—H5A0.9300
C1—C31.433 (3)C6—C71.389 (3)
N2—C21.138 (3)C6—H6A0.9300
C2—C31.430 (3)C7—C81.388 (3)
N3—N41.302 (3)C7—C101.504 (3)
N3—C31.305 (3)C8—C91.375 (3)
N4—C41.410 (3)C8—H8A0.9300
N4—H4A0.8600C9—H9A0.9300
C4—C91.380 (3)C10—H10A0.9600
C4—C51.387 (3)C10—H10B0.9600
C5—C61.375 (3)C10—H10C0.9600
N1—C1—C3178.5 (3)C7—C6—H6A118.9
N2—C2—C3175.3 (3)C8—C7—C6117.4 (2)
N4—N3—C3120.74 (19)C8—C7—C10120.9 (2)
N3—C3—C2123.9 (2)C6—C7—C10121.7 (2)
N3—C3—C1117.0 (2)C9—C8—C7121.4 (2)
C2—C3—C1119.1 (2)C9—C8—H8A119.3
N3—N4—C4120.83 (19)C7—C8—H8A119.3
N3—N4—H4A119.6C8—C9—C4119.9 (2)
C4—N4—H4A119.6C8—C9—H9A120.0
C9—C4—C5120.0 (2)C4—C9—H9A120.0
C9—C4—N4118.5 (2)C7—C10—H10A109.5
C5—C4—N4121.4 (2)C7—C10—H10B109.5
C6—C5—C4119.1 (2)H10A—C10—H10B109.5
C6—C5—H5A120.5C7—C10—H10C109.5
C4—C5—H5A120.5H10A—C10—H10C109.5
C5—C6—C7122.1 (2)H10B—C10—H10C109.5
C5—C6—H6A118.9
N4—N3—C3—C22.4 (4)N4—C4—C5—C6178.3 (2)
N4—N3—C3—C1179.0 (2)C4—C5—C6—C7−0.1 (4)
N2—C2—C3—N345 (3)C5—C6—C7—C80.9 (4)
N2—C2—C3—C1−131 (3)C5—C6—C7—C10−178.4 (2)
N1—C1—C3—N3−65 (10)C6—C7—C8—C9−0.7 (4)
N1—C1—C3—C2112 (10)C10—C7—C8—C9178.6 (2)
C3—N3—N4—C4−176.4 (2)C7—C8—C9—C4−0.2 (4)
N3—N4—C4—C9−175.4 (2)C5—C4—C9—C81.0 (3)
N3—N4—C4—C55.4 (3)N4—C4—C9—C8−178.1 (2)
C9—C4—C5—C6−0.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4A···N2i0.862.363.174 (3)157

Symmetry codes: (i) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5262).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1994). CAD-4 Software Enraf–Nonius, Delft. The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tsai, P. S. (2005). Dyes Pigments, 11, 259–264.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography