PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m13.
Published online 2009 December 4. doi:  10.1107/S1600536809051770
PMCID: PMC2980125

Tetra­kis(2-amino­thia­zole-κN 3)dichloridocadmium(II)

Abstract

In the title complex, [CdCl2(C3H4N2S)4],the CdII atom has an trans-Cl2N4 octa­hedral coordination geometry defined by four N atoms derived from the four 2-amino­thia­zole ligands and two Cl atoms. The amino groups participate in intra- and inter­molecular N—H(...)N and N—H(...)Cl hydrogen bonding that stabilizes both the mol­ecular and crystal structures.

Related literature

For the coordination properties of heterocycles, see: Raper (1994 [triangle]); Karlin & Zubieta (1983 [triangle]). For the structures of related amino­thia­zole complexes, see: Batı et al. (2006 [triangle]); Davarski et al. (1996 [triangle]); Macíček & Davarski (1993 [triangle]); Maniukiewicz (2004 [triangle]); Raper et al. (1981 [triangle]); Suh et al. (2005 [triangle], 2007 [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00m13-scheme1.jpg

Experimental

Crystal data

  • [CdCl2(C3H4N2S)4]
  • M r = 583.87
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00m13-efi1.jpg
  • a = 8.6056 (1) Å
  • b = 15.2838 (2) Å
  • c = 16.2097 (2) Å
  • β = 103.605 (1)°
  • V = 2072.18 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.73 mm−1
  • T = 296 K
  • 0.40 × 0.19 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.544, T max = 0.870
  • 21163 measured reflections
  • 5159 independent reflections
  • 4532 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.052
  • S = 1.05
  • 5159 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051770/tk2590sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051770/tk2590Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Some heterocyclic organic compounds have biologically useful properties, having anti-tumour, anti-fungal, and anti-infection activities. Amongst these, aminothiazoles are an important type of N,S-containing heterocycle (Raper, 1994). The N and S atoms play a key role in the coordination of metals at the active sites of various metallobiomelecules (Karlin & Zubieta, 1983). The crystal structures of aminothiazole complexes have attracted recent interest (Suh et al., 2005, 2007, 2009; Batı et al., 2006; Davarski et al., 1996; Macíček & Davarski, 1993; Maniukiewicz, 2004; Raper et al., 1981). Herein, we report the synthesis and crystal structure of the title complex, (I).

As shown in Fig. 1, the complex (I) comprises discrete Cd(C3H4N2S)4Cl2 molecules. The octahedral CdII coordination environment is defined by four N atoms derived from four neutral monodentate 2-aminothiazole ligands and two Cl atoms [Cd—Cl = 2.6294 (5) and 2.6560 (4) Å, and Cd—N = 2.3569 (14)-2.4432 (14) Å]. The Cl atoms occupy trans positions. The amino groups participate in intra- and inter-molecular N—H···N and N—H···Cl hydrogen bonds (Table 1). In the crystal structure molecules are interconnected by these interactions into a three-dimensional hydrogen bond network (Fig. 2).

Experimental

A water–ethanol (1:1) solution (40 ml) of 2-aminothiazole (5 mmol) was added dropwise to a water–ethanol (1:1) solution (40 ml) of CdCl2.2.5H2O (2 mmol) with stirring. The small amount of precipitates formed from the mixed solution were filtered off. The filtered solution was allowed to stand at room temperature. After several days, yellow blocks were obtained. Analysis found: C 24.95, H 2.74, N 19.11, S 21.72, Cd 19.30%; C12H16CdCl2N8S4 requires: C 24.68, H 2.76, N 19.20, S 21.96, Cl 12.14, Cd 19.25%.

Refinement

Positional parameters for the H atoms were calculated geometrically and constrained to ride on their attached atoms with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
A view of the unit cell contents of (I). The C–H atoms have been omitted for reasons of clarity (dashed lines).

Crystal data

[CdCl2(C3H4N2S)4]F(000) = 1160
Mr = 583.87Dx = 1.872 Mg m3Dm = 1.87 Mg m3Dm measured by flotation method
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5290 reflections
a = 8.6056 (1) Åθ = 2.7–28.3°
b = 15.2838 (2) ŵ = 1.73 mm1
c = 16.2097 (2) ÅT = 296 K
β = 103.605 (1)°Block, yellow
V = 2072.18 (4) Å30.40 × 0.19 × 0.08 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer5159 independent reflections
Radiation source: fine-focus sealed tube4532 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −11→11
Tmin = 0.544, Tmax = 0.87k = −20→20
21163 measured reflectionsl = −20→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0234P)2 + 0.6132P] where P = (Fo2 + 2Fc2)/3
5159 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd0.237289 (14)0.127887 (8)0.242806 (7)0.02555 (5)
Cl10.41984 (5)0.15665 (3)0.13431 (3)0.03443 (10)
Cl20.05073 (6)0.10433 (3)0.34816 (3)0.03723 (11)
S110.72017 (6)−0.00335 (3)0.42080 (3)0.04305 (13)
C120.6028 (2)0.07360 (12)0.35499 (11)0.0312 (4)
N130.44963 (17)0.05509 (9)0.33585 (9)0.0304 (3)
C140.4223 (2)−0.02238 (12)0.37465 (12)0.0369 (4)
H14A0.3200−0.04530.36820.044*
C150.5505 (3)−0.06232 (13)0.42170 (13)0.0432 (5)
H150.5485−0.11460.45080.052*
N160.6685 (2)0.14549 (12)0.33020 (12)0.0482 (5)
H16A0.60890.18390.29920.058*
H16B0.77020.15320.34530.058*
S210.44426 (7)0.38898 (3)0.41822 (3)0.04409 (13)
C220.3558 (2)0.28774 (11)0.39147 (11)0.0292 (4)
N230.34496 (18)0.26409 (9)0.31227 (9)0.0295 (3)
C240.4114 (2)0.32847 (12)0.27081 (12)0.0367 (4)
H24A0.41530.32260.21420.044*
C250.4692 (3)0.39916 (14)0.31605 (13)0.0440 (5)
H250.51600.44680.29560.053*
N260.3052 (2)0.23949 (10)0.44936 (10)0.0400 (4)
H26A0.26200.18920.43560.048*
H26B0.31590.25890.50020.048*
S31−0.24063 (6)0.26745 (4)0.06541 (4)0.04824 (14)
C32−0.1262 (2)0.18601 (12)0.12468 (11)0.0327 (4)
N330.02729 (18)0.20338 (10)0.14653 (9)0.0311 (3)
C340.0573 (2)0.28381 (12)0.11430 (12)0.0384 (4)
H34A0.16010.30660.12300.046*
C35−0.0703 (3)0.32678 (14)0.06998 (13)0.0467 (5)
H35−0.06700.38140.04510.056*
N36−0.1933 (2)0.10964 (11)0.14150 (12)0.0458 (4)
H36A−0.13400.06850.16830.055*
H36B−0.29500.10240.12540.055*
S410.07311 (8)−0.15017 (3)0.08737 (4)0.05010 (14)
C420.1437 (2)−0.04377 (12)0.10337 (11)0.0319 (4)
N430.13773 (18)−0.01062 (9)0.17752 (9)0.0309 (3)
C440.0725 (2)−0.07152 (12)0.22319 (12)0.0385 (4)
H44A0.0581−0.05910.27710.046*
C450.0316 (3)−0.14861 (13)0.18614 (13)0.0446 (5)
H45−0.0129−0.19480.21010.054*
N460.1983 (2)−0.00158 (11)0.04363 (10)0.0455 (4)
H46A0.23290.05120.05240.055*
H46B0.1987−0.0272−0.00350.055*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd0.02192 (7)0.02708 (7)0.02791 (7)0.00039 (5)0.00638 (5)0.00172 (5)
Cl10.0292 (2)0.0456 (3)0.0302 (2)−0.00291 (19)0.01048 (17)0.00135 (18)
Cl20.0292 (2)0.0449 (3)0.0411 (2)−0.00374 (19)0.01530 (19)−0.0022 (2)
S110.0319 (3)0.0432 (3)0.0476 (3)0.0073 (2)−0.0034 (2)0.0046 (2)
C120.0268 (9)0.0340 (9)0.0320 (9)0.0029 (7)0.0052 (7)−0.0023 (7)
N130.0257 (7)0.0313 (8)0.0331 (8)0.0016 (6)0.0047 (6)0.0035 (6)
C140.0342 (10)0.0359 (10)0.0395 (10)−0.0050 (8)0.0063 (8)0.0053 (8)
C150.0451 (12)0.0348 (10)0.0462 (11)0.0008 (9)0.0033 (9)0.0097 (9)
N160.0252 (9)0.0486 (10)0.0682 (12)−0.0030 (7)0.0054 (8)0.0154 (9)
S210.0559 (3)0.0367 (3)0.0391 (3)−0.0151 (2)0.0100 (2)−0.0074 (2)
C220.0275 (9)0.0268 (8)0.0313 (9)0.0013 (7)0.0028 (7)−0.0005 (7)
N230.0310 (8)0.0275 (7)0.0295 (7)−0.0006 (6)0.0063 (6)0.0009 (6)
C240.0377 (10)0.0407 (11)0.0310 (9)−0.0061 (8)0.0066 (8)0.0035 (8)
C250.0495 (13)0.0413 (11)0.0411 (11)−0.0136 (9)0.0103 (9)0.0042 (9)
N260.0550 (11)0.0371 (9)0.0281 (8)−0.0106 (8)0.0101 (7)−0.0006 (7)
S310.0343 (3)0.0509 (3)0.0531 (3)0.0143 (2)−0.0025 (2)0.0033 (2)
C320.0275 (9)0.0375 (10)0.0317 (9)0.0055 (8)0.0045 (7)−0.0035 (8)
N330.0261 (8)0.0324 (8)0.0330 (8)0.0028 (6)0.0036 (6)0.0023 (6)
C340.0361 (11)0.0364 (10)0.0414 (10)−0.0012 (8)0.0067 (8)0.0057 (8)
C350.0504 (13)0.0384 (11)0.0483 (12)0.0074 (10)0.0056 (10)0.0097 (9)
N360.0262 (9)0.0461 (10)0.0622 (11)−0.0022 (7)0.0045 (8)0.0047 (8)
S410.0633 (4)0.0360 (3)0.0516 (3)−0.0144 (3)0.0148 (3)−0.0128 (2)
C420.0263 (9)0.0302 (9)0.0369 (10)−0.0011 (7)0.0029 (7)−0.0014 (7)
N430.0302 (8)0.0266 (7)0.0352 (8)−0.0018 (6)0.0064 (6)−0.0013 (6)
C440.0405 (11)0.0370 (10)0.0380 (10)−0.0067 (8)0.0096 (8)0.0005 (8)
C450.0468 (13)0.0361 (10)0.0497 (12)−0.0121 (9)0.0086 (10)0.0030 (9)
N460.0569 (12)0.0439 (10)0.0374 (9)−0.0117 (8)0.0147 (8)−0.0049 (7)

Geometric parameters (Å, °)

Cd—N132.3569 (14)C25—H250.9300
Cd—N332.3886 (14)N26—H26A0.8600
Cd—N432.4308 (14)N26—H26B0.8600
Cd—N232.4432 (14)S31—C351.711 (2)
Cd—Cl22.6294 (5)S31—C321.7310 (19)
Cd—Cl12.6560 (4)C32—N331.312 (2)
S11—C151.719 (2)C32—N361.358 (2)
S11—C121.7420 (18)N33—C341.384 (2)
C12—N131.312 (2)C34—C351.335 (3)
C12—N161.340 (2)C34—H34A0.9300
N13—C141.387 (2)C35—H350.9300
C14—C151.332 (3)N36—H36A0.8600
C14—H14A0.9300N36—H36B0.8600
C15—H150.9300S41—C451.721 (2)
N16—H16A0.8600S41—C421.7339 (18)
N16—H16B0.8600C42—N431.316 (2)
S21—C251.726 (2)C42—N461.337 (2)
S21—C221.7341 (18)N43—C441.387 (2)
C22—N231.316 (2)C44—C451.332 (3)
C22—N261.344 (2)C44—H44A0.9300
N23—C241.388 (2)C45—H450.9300
C24—C251.335 (3)N46—H46A0.8600
C24—H24A0.9300N46—H46B0.8600
N13—Cd—N33178.41 (5)N23—C24—H24A121.6
N13—Cd—N4390.48 (5)C24—C25—S21109.85 (15)
N33—Cd—N4390.07 (5)C24—C25—H25125.1
N13—Cd—N2387.39 (5)S21—C25—H25125.1
N33—Cd—N2392.07 (5)C22—N26—H26A120.0
N43—Cd—N23177.85 (5)C22—N26—H26B120.0
N13—Cd—Cl291.13 (4)H26A—N26—H26B120.0
N33—Cd—Cl290.39 (4)C35—S31—C3289.29 (10)
N43—Cd—Cl287.53 (4)N33—C32—N36124.62 (17)
N23—Cd—Cl292.33 (4)N33—C32—S31114.17 (14)
N13—Cd—Cl190.66 (4)N36—C32—S31121.10 (14)
N33—Cd—Cl187.82 (4)C32—N33—C34110.08 (15)
N43—Cd—Cl193.36 (4)C32—N33—Cd129.62 (12)
N23—Cd—Cl186.84 (4)C34—N33—Cd119.74 (12)
Cl2—Cd—Cl1177.991 (15)C35—C34—N33115.94 (19)
C15—S11—C1289.30 (9)C35—C34—H34A122.0
N13—C12—N16125.25 (17)N33—C34—H34A122.0
N13—C12—S11113.89 (14)C34—C35—S31110.51 (16)
N16—C12—S11120.83 (14)C34—C35—H35124.7
C12—N13—C14110.17 (15)S31—C35—H35124.7
C12—N13—Cd129.36 (12)C32—N36—H36A120.0
C14—N13—Cd120.32 (12)C32—N36—H36B120.0
C15—C14—N13116.44 (18)H36A—N36—H36B120.0
C15—C14—H14A121.8C45—S41—C4289.42 (9)
N13—C14—H14A121.8N43—C42—N46124.85 (17)
C14—C15—S11110.20 (15)N43—C42—S41114.21 (14)
C14—C15—H15124.9N46—C42—S41120.94 (14)
S11—C15—H15124.9C42—N43—C44109.66 (15)
C12—N16—H16A120.0C42—N43—Cd130.33 (12)
C12—N16—H16B120.0C44—N43—Cd119.83 (11)
H16A—N16—H16B120.0C45—C44—N43116.75 (18)
C25—S21—C2289.25 (9)C45—C44—H44A121.6
N23—C22—N26124.78 (16)N43—C44—H44A121.6
N23—C22—S21114.54 (13)C44—C45—S41109.95 (15)
N26—C22—S21120.69 (13)C44—C45—H45125.0
C22—N23—C24109.57 (15)S41—C45—H45125.0
C22—N23—Cd128.01 (11)C42—N46—H46A120.0
C24—N23—Cd122.38 (11)C42—N46—H46B120.0
C25—C24—N23116.79 (17)H46A—N46—H46B120.0
C25—C24—H24A121.6
C15—S11—C12—N13−0.25 (15)C35—S31—C32—N330.69 (15)
C15—S11—C12—N16177.77 (17)C35—S31—C32—N36−175.75 (17)
N16—C12—N13—C14−177.55 (19)N36—C32—N33—C34175.40 (18)
S11—C12—N13—C140.36 (19)S31—C32—N33—C34−0.9 (2)
N16—C12—N13—Cd7.0 (3)N36—C32—N33—Cd−13.3 (3)
S11—C12—N13—Cd−175.09 (8)S31—C32—N33—Cd170.40 (8)
N43—Cd—N13—C12131.98 (16)N43—Cd—N33—C3247.14 (16)
N23—Cd—N13—C12−48.20 (15)N23—Cd—N33—C32−132.74 (16)
Cl2—Cd—N13—C12−140.48 (15)Cl2—Cd—N33—C32−40.39 (15)
Cl1—Cd—N13—C1238.61 (15)Cl1—Cd—N33—C32140.51 (15)
N43—Cd—N13—C14−43.08 (13)N43—Cd—N33—C34−142.28 (14)
N23—Cd—N13—C14136.74 (13)N23—Cd—N33—C3437.84 (14)
Cl2—Cd—N13—C1444.46 (13)Cl2—Cd—N33—C34130.19 (13)
Cl1—Cd—N13—C14−136.45 (13)Cl1—Cd—N33—C34−48.91 (13)
C12—N13—C14—C15−0.3 (2)C32—N33—C34—C350.7 (2)
Cd—N13—C14—C15175.60 (14)Cd—N33—C34—C35−171.58 (14)
N13—C14—C15—S110.1 (2)N33—C34—C35—S31−0.2 (2)
C12—S11—C15—C140.05 (17)C32—S31—C35—C34−0.27 (17)
C25—S21—C22—N23−0.46 (15)C45—S41—C42—N430.69 (15)
C25—S21—C22—N26179.14 (17)C45—S41—C42—N46−179.30 (17)
N26—C22—N23—C24−178.86 (18)N46—C42—N43—C44179.12 (18)
S21—C22—N23—C240.72 (19)S41—C42—N43—C44−0.87 (19)
N26—C22—N23—Cd−1.1 (3)N46—C42—N43—Cd−5.8 (3)
S21—C22—N23—Cd178.50 (8)S41—C42—N43—Cd174.18 (8)
N13—Cd—N23—C22−64.98 (15)N13—Cd—N43—C42−105.72 (16)
N33—Cd—N23—C22116.52 (15)N33—Cd—N43—C4272.79 (16)
Cl2—Cd—N23—C2226.04 (15)Cl2—Cd—N43—C42163.17 (16)
Cl1—Cd—N23—C22−155.79 (15)Cl1—Cd—N43—C42−15.03 (16)
N13—Cd—N23—C24112.54 (14)N13—Cd—N43—C4468.91 (14)
N33—Cd—N23—C24−65.97 (14)N33—Cd—N43—C44−112.58 (14)
Cl2—Cd—N23—C24−156.44 (13)Cl2—Cd—N43—C44−22.20 (13)
Cl1—Cd—N23—C2421.73 (13)Cl1—Cd—N43—C44159.60 (13)
C22—N23—C24—C25−0.7 (2)C42—N43—C44—C450.7 (2)
Cd—N23—C24—C25−178.63 (15)Cd—N43—C44—C45−174.98 (15)
N23—C24—C25—S210.4 (2)N43—C44—C45—S41−0.2 (2)
C22—S21—C25—C240.04 (17)C42—S41—C45—C44−0.28 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N16—H16A···N230.862.633.277 (2)133
N16—H16A···Cl10.862.813.3903 (19)126
N16—H16B···Cl2i0.862.523.2941 (18)151
N26—H26A···Cl20.862.413.1722 (17)149
N26—H26B···Cl1ii0.862.513.3300 (16)161
N36—H36A···N430.862.613.324 (2)142
N36—H36B···Cl1iii0.862.633.3810 (18)147
N46—H46A···Cl10.862.443.2135 (18)150
N46—H46B···N36iv0.862.563.417 (2)177

Symmetry codes: (i) x+1, y, z; (ii) x, −y+1/2, z+1/2; (iii) x−1, y, z; (iv) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2590).

References

  • Batı, H., Yüksektepe, Ç., Çalı˛skan, N. & Büyükgüngör, O. (2006). Acta Cryst. E62, m2313–m2315.
  • Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Davarski, K., Macicek, J. & Konovalov, L. (1996). J. Coord. Chem.38, 123–134.
  • Karlin, K. D. & Zubieta, J. (1983). Biological and Inorganic Copper Chemistry New York: Adenine Press.
  • Macíček, J. & Davarski, K. (1993). Acta Cryst. C49, 592–593.
  • Maniukiewicz, W. (2004). Acta Cryst. E60, m340–m341.
  • Raper, E. S. (1994). Coord. Chem. Rev.129, 91–151.
  • Raper, E. S., Oughtred, R. E., Nowell, I. W. & March, L. A. (1981). Acta Cryst. B37, 928–930.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Suh, S. W., Kim, I. H. & Kim, C. H. (2005). Anal. Sci. Technol.18, 386–390.
  • Suh, S. W., Kim, C.-H. & Kim, I. H. (2007). Acta Cryst. E63, m2177.
  • Suh, S. W., Kim, C.-H. & Kim, I. H. (2009). Acta Cryst. E65, m1054. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography