PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m34.
Published online 2009 December 9. doi:  10.1107/S1600536809052234
PMCID: PMC2980123

Bis(3,4-dimethoxy­benzoato-κ2 O,O′)(1,10-phenanthroline-κ2 N,N′)copper(II)

Abstract

The asymmetric unit of the title compound, [Cu(C9H9O4)2(C12H8N2)], contains one half-mol­ecule, the complete mol­ecule being generated by a twofold rotation axis. The CuII atom exhibits a six-coordinated distorted octa­hedral geometry with two N atoms from the phenanthroline ligand [Cu—N 2.007 (2) Å] and four O atoms from two 3,4-dimethoxy­benzoate ligands [Cu—O 1.950 (1) and 2.524 (1) Å]. The difference in Cu—O bond distances indicates a strong Jahn–Teller effect. In the crystal, C—H(...)π inter­actions result in chains of mol­ecules along the c axis.

Related literature

For metal–1,10-phenanthroline complexes with unusual features, see: Ma et al. (2004 [triangle]); Bi et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00m34-scheme1.jpg

Experimental

Crystal data

  • [Cu(C9H9O4)2(C12H8N2)]
  • M r = 606.07
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00m34-efi1.jpg
  • a = 12.1639 (10) Å
  • b = 11.4296 (9) Å
  • c = 19.7470 (16) Å
  • β = 104.027 (1)°
  • V = 2663.5 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.88 mm−1
  • T = 273 K
  • 0.23 × 0.21 × 0.19 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.824, T max = 0.851
  • 6857 measured reflections
  • 2351 independent reflections
  • 2136 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.086
  • S = 1.01
  • 2351 reflections
  • 187 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809052234/ez2194sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052234/ez2194Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Postgraduate Foundation of Taishan University for financial support (grant No.Y07-2-15).

supplementary crystallographic information

Comment

Metal complexes with carboxylate ligands are among the most investigated complexes in the field of coordination chemistry. In addition, metal–1,10-phenanthroline complexes and their derivatives have attracted much attention during recent decades because of their unusual features (Ma et al., 2004; Bi et al., 2004). In this work, the title compound was obtained from the reaction of 3,4-dimethoxybenzoic acid and cupric acetate in the presence of 1,10-phenanthroline.

The molecular structure of the title complex is shown in Fig. 1. The Cu(II) atom exhibits a six-coordinated distorted octahedral geometry with two N atoms [Cu—N 2.007 (2) Å] from the phenanthroline ligand and four O atoms from the two 3,4-dimethoxybenzoate ligands [Cu—O 1.950 (1), 2.524 (1) Å]. The difference in Cu—O bond distances [Cu—O 1.950 (1), 2.524 (1) Å] indicates a strong Jahn-Teller effect. Two O atoms and two N atoms occupy the equatorial planar position with a slight deviation from the ideal plane of 0.0263 (2)Å, while two O atoms lie in the apical positions with an axis angle of 127.6 (2)° showing a large deviation from the normal 180°. A C8—H8b···π interaction results in chains of molecules along the c-axis [H8b···CG1 2.979 (3) Å, where CG1 is the centroid of the C22, C23, C29, C22i, C23i, C29i ring; symmetry operator, i: -x, y, 0.5 - z].

Experimental

The reaction was carried out by the solvothermal method. 3,4-dimythoxybenzoic acid (0.121 g, 2 mmol), cupric acetate (0.199 g, 1 mmol) and 1,10-phenanthroline (0.180 g, 1 mmol) were added to the airtight vessel with a 1:2 ratio of ethanol to water. The resulting blue solution was filtered. The filtrate was left for several days at room temperature to yield blue, block-shaped crystals.

The yield was 78% and elemental analysis: calc. for C30H26CuN2O8: C 59.45, H 4.32, N 4.62; found: C 59.31, H 4.49, N 4.53. The elemental analyses were performed with a PERKIN ELMER MODEL 2400 SERIES II.

Refinement

The Uiso(H) values were set at 1.2Ueq(C—H) for the H atoms in the phenanthroline and aromatic ring, and 1.5Ueq(C—H) for the methyl moiety. As the diffraction intensities were of high quality, the The H atoms could be located in difference Fourier maps.

Figures

Fig. 1.
The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms. (Symmetry code: -x, y, 0.5 - z)

Crystal data

[Cu(C9H9O4)2(C12H8N2)]F(000) = 1252
Mr = 606.07Dx = 1.511 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.1639 (10) ÅCell parameters from 4483 reflections
b = 11.4296 (9) Åθ = 2.5–28.3°
c = 19.7470 (16) ŵ = 0.88 mm1
β = 104.027 (1)°T = 273 K
V = 2663.5 (4) Å3Block, blue
Z = 40.23 × 0.21 × 0.19 mm

Data collection

Bruker SMART APEX diffractometer2351 independent reflections
Radiation source: fine-focus sealed tube2136 reflections with I > 2σ(I)
graphiteRint = 0.059
[var phi] and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −14→14
Tmin = 0.824, Tmax = 0.851k = −10→13
6857 measured reflectionsl = −23→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.045P)2 + 1.2527P] where P = (Fo2 + 2Fc2)/3
2351 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.00000.96118 (3)0.25000.03588 (14)
O10.00052 (11)0.87873 (12)0.36863 (7)0.0437 (3)
O20.10961 (12)0.84452 (12)0.29637 (7)0.0445 (3)
O50.11674 (13)0.56453 (14)0.55593 (8)0.0539 (4)
O60.27611 (14)0.44980 (13)0.52542 (9)0.0592 (4)
N1−0.10829 (13)1.09400 (15)0.21869 (8)0.0389 (4)
C10.07772 (15)0.82281 (16)0.35206 (9)0.0364 (4)
C20.13570 (15)0.72454 (16)0.39696 (9)0.0341 (4)
C30.09898 (15)0.69411 (16)0.45613 (10)0.0365 (4)
H30.04070.73640.46760.044*
C40.14771 (16)0.60242 (17)0.49769 (10)0.0385 (4)
C50.23698 (17)0.53957 (16)0.48098 (11)0.0406 (5)
C60.27502 (16)0.57054 (18)0.42332 (11)0.0418 (5)
H60.33490.53000.41260.050*
C70.22402 (16)0.66243 (17)0.38092 (10)0.0389 (4)
H70.24930.68230.34160.047*
C80.0266 (2)0.6253 (2)0.57448 (12)0.0583 (6)
H8A0.04940.70450.58680.087*
H8B0.00790.58720.61350.087*
H8C−0.03850.62550.53560.087*
C90.3730 (2)0.3888 (3)0.51835 (16)0.0801 (9)
H9A0.35780.35140.47350.120*
H9B0.39260.33070.55440.120*
H9C0.43490.44260.52230.120*
C19−0.21817 (17)1.0896 (2)0.18725 (11)0.0482 (5)
H19−0.25251.01720.17560.058*
C20−0.28296 (19)1.1910 (2)0.17132 (12)0.0588 (6)
H20−0.35971.18540.14970.071*
C21−0.23515 (19)1.2974 (2)0.18712 (11)0.0547 (6)
H21−0.27931.36460.17740.066*
C22−0.11811 (18)1.30632 (18)0.21845 (10)0.0454 (5)
C23−0.05979 (16)1.20062 (17)0.23347 (9)0.0375 (4)
C29−0.0562 (2)1.41293 (19)0.23526 (11)0.0541 (6)
H29−0.09421.48390.22570.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0365 (2)0.0395 (2)0.0311 (2)0.0000.00731 (14)0.000
O10.0448 (7)0.0459 (8)0.0407 (7)0.0081 (6)0.0110 (6)0.0047 (6)
O20.0497 (8)0.0496 (8)0.0357 (7)0.0074 (6)0.0134 (6)0.0075 (6)
O50.0605 (9)0.0624 (9)0.0452 (8)0.0236 (7)0.0253 (7)0.0197 (7)
O60.0618 (10)0.0582 (10)0.0624 (10)0.0301 (8)0.0244 (8)0.0214 (8)
N10.0365 (8)0.0467 (9)0.0323 (8)0.0016 (7)0.0060 (7)−0.0015 (7)
C10.0377 (9)0.0363 (10)0.0330 (9)−0.0037 (8)0.0044 (8)−0.0019 (8)
C20.0369 (9)0.0339 (9)0.0304 (9)−0.0024 (8)0.0062 (7)−0.0038 (8)
C30.0359 (9)0.0377 (10)0.0362 (10)0.0059 (8)0.0093 (8)−0.0022 (8)
C40.0400 (10)0.0423 (11)0.0345 (10)0.0049 (8)0.0115 (8)0.0023 (8)
C50.0415 (10)0.0381 (11)0.0410 (11)0.0074 (8)0.0077 (9)0.0009 (8)
C60.0391 (10)0.0430 (10)0.0449 (11)0.0061 (8)0.0133 (9)−0.0075 (9)
C70.0426 (10)0.0421 (10)0.0336 (9)−0.0013 (8)0.0125 (8)−0.0040 (8)
C80.0647 (14)0.0700 (15)0.0497 (12)0.0195 (12)0.0321 (11)0.0105 (11)
C90.0833 (19)0.0836 (19)0.0792 (18)0.0514 (16)0.0313 (15)0.0234 (15)
C190.0376 (10)0.0640 (13)0.0404 (11)0.0020 (10)0.0042 (9)−0.0029 (10)
C200.0405 (11)0.0834 (18)0.0493 (13)0.0151 (12)0.0046 (10)0.0050 (12)
C210.0580 (13)0.0639 (15)0.0431 (12)0.0226 (12)0.0139 (10)0.0087 (11)
C220.0599 (12)0.0508 (12)0.0290 (9)0.0124 (10)0.0173 (9)0.0053 (9)
C230.0435 (10)0.0451 (11)0.0255 (9)0.0019 (8)0.0116 (8)0.0001 (8)
C290.0834 (15)0.0426 (11)0.0415 (12)0.0092 (11)0.0251 (11)0.0036 (10)

Geometric parameters (Å, °)

Cu1—O2i1.950 (1)C6—C71.392 (3)
Cu1—O21.950 (1)C6—H60.9300
Cu1—N1i2.007 (2)C7—H70.9300
Cu1—N12.007 (2)C8—H8A0.9600
Cu1—O12.524 (1)C8—H8B0.9600
O1—C11.244 (2)C8—H8C0.9600
O2—C11.276 (2)C9—H9A0.9600
O5—C41.365 (2)C9—H9B0.9600
O5—C81.419 (2)C9—H9C0.9600
O6—C51.359 (2)C19—C201.394 (3)
O6—C91.406 (3)C19—H190.9300
N1—C191.331 (2)C20—C211.351 (3)
N1—C231.355 (2)C20—H200.9300
C1—C21.497 (3)C21—C221.412 (3)
C2—C71.387 (3)C21—H210.9300
C2—C31.392 (3)C22—C231.396 (3)
C3—C41.374 (3)C22—C291.429 (3)
C3—H30.9300C23—C23i1.443 (4)
C4—C51.406 (3)C29—C29i1.350 (5)
C5—C61.375 (3)C29—H290.9300
O2i—Cu1—O293.72 (9)C7—C6—H6119.9
O2i—Cu1—N1i170.07 (6)C2—C7—C6120.39 (18)
O2—Cu1—N1i92.84 (6)C2—C7—H7119.8
O2i—Cu1—N192.84 (6)C6—C7—H7119.8
O2—Cu1—N1170.07 (6)O5—C8—H8A109.5
N1i—Cu1—N181.69 (9)O5—C8—H8B109.5
O2i—Cu1—O191.61 (5)H8A—C8—H8B109.5
O2—Cu1—O157.40 (5)O5—C8—H8C109.5
N1i—Cu1—O198.20 (5)H8A—C8—H8C109.5
N1—Cu1—O1114.98 (5)H8B—C8—H8C109.5
C1—O1—Cu177.28 (11)O6—C9—H9A109.5
C1—O2—Cu1102.80 (12)O6—C9—H9B109.5
C4—O5—C8116.78 (15)H9A—C9—H9B109.5
C5—O6—C9118.78 (19)O6—C9—H9C109.5
C19—N1—C23118.06 (18)H9A—C9—H9C109.5
C19—N1—Cu1128.66 (15)H9B—C9—H9C109.5
C23—N1—Cu1113.28 (12)N1—C19—C20121.5 (2)
O1—C1—O2122.24 (17)N1—C19—H19119.3
O1—C1—C2120.47 (17)C20—C19—H19119.3
O2—C1—C2117.28 (16)C21—C20—C19120.5 (2)
C7—C2—C3119.18 (17)C21—C20—H20119.7
C7—C2—C1121.90 (17)C19—C20—H20119.7
C3—C2—C1118.91 (16)C20—C21—C22119.9 (2)
C4—C3—C2120.81 (17)C20—C21—H21120.1
C4—C3—H3119.6C22—C21—H21120.1
C2—C3—H3119.6C23—C22—C21115.9 (2)
O5—C4—C3125.33 (17)C23—C22—C29118.47 (19)
O5—C4—C5114.98 (16)C21—C22—C29125.62 (19)
C3—C4—C5119.69 (18)N1—C23—C22124.09 (17)
O6—C5—C6126.41 (18)N1—C23—C23i115.86 (10)
O6—C5—C4113.81 (18)C22—C23—C23i120.05 (12)
C6—C5—C4119.77 (18)C29i—C29—C22121.46 (12)
C5—C6—C7120.13 (18)C29i—C29—H29119.3
C5—C6—H6119.9C22—C29—H29119.3

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

C1 is the centroid of the C22,C23,C29,C22',C23',C29' ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cg10.962.983.642 (3)127

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2194).

References

  • Bi, W., Cao, R., Sun, D., Yuan, D., Li, X., Wang, Y., Li, X. & Hong, M. (2004). Chem. Commun. pp. 2104–2105. [PubMed]
  • Bruker (2005). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ma, C., Wang, W., Zhang, X., Chen, C., Liu, Q., Zhu, H., Liao, D. & Li, L. (2004). Eur. J. Inorg. Chem. pp. 3522–3532.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography