PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o18.
Published online 2009 December 4. doi:  10.1107/S1600536809050983
PMCID: PMC2980122

(E)-N-[4-(Methyl­sulfon­yl)benzyl­idene]aniline

Abstract

The mol­ecule of the title compound, C14H13NO2S, displays a trans configuration with respect to the C=N double bond. The dihedral angle between the two aromatic ring planes is 62.07 (18)°.

Related literature

For a related structure, see: Qian & Cui (2009 [triangle]). For comparitive bond lengths, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00o18-scheme1.jpg

Experimental

Crystal data

  • C14H13NO2S
  • M r = 259.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00o18-efi1.jpg
  • a = 8.2070 (16) Å
  • b = 5.7750 (12) Å
  • c = 26.945 (5) Å
  • β = 94.72 (3)°
  • V = 1272.7 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.930, T max = 0.976
  • 2462 measured reflections
  • 2292 independent reflections
  • 1542 reflections with I > 2σ(I)
  • R int = 0.053
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.138
  • S = 1.03
  • 2292 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809050983/rz2398sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050983/rz2398Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was sponsored by the Shandong Province Science & Technology Innovation Foundation (People’s Republic of China).

supplementary crystallographic information

Comment

Schiff base compounds have been of great of interest for many years. and act as important precursors for coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular archtectures. As an extension of work on the structural characterization of Schiff base compounds, the crystal structure of the title compound is reported here.

In the title compound (Fig. 1), all bond lengths are within normal ranges (Allen et al., 1987) and comparable to the values observed in a closely related compound (Qian et al., 2009). The molecule displays a trans-configuration with respect to the C=N double bond. The dihedral angle between two aromatic ring planes is 62.07 (18)°. The crystal packing is stabilized only by van der Waals interactions.

Experimental

4-(Methylsulfonyl)benzaldehyde (0.184 g) and aniline (0.093 g) were dissolved in acetonitrile (20 ml). The mixture was stirred at room temperature for 10 min to give a clear yellow solution. After keeping the solution in air for 7 d, yellow block-shaped crystals suitable for X-ray analysis were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement

All H atoms were placed in geometrical positions and constrained to ride on their parent atoms, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.

Crystal data

C14H13NO2SF(000) = 544
Mr = 259.31Dx = 1.353 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.2070 (16) Åθ = 9–13°
b = 5.7750 (12) ŵ = 0.25 mm1
c = 26.945 (5) ÅT = 293 K
β = 94.72 (3)°Block, yellow
V = 1272.7 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1542 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
graphiteθmax = 25.3°, θmin = 1.5°
ω/2θ scansh = 0→9
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = 0→6
Tmin = 0.930, Tmax = 0.976l = −32→32
2462 measured reflections3 standard reflections every 200 reflections
2292 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0501P)2 + 1.018P] where P = (Fo2 + 2Fc2)/3
2292 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.80688 (10)0.31400 (15)0.45864 (3)0.0473 (3)
N0.1198 (3)−0.1536 (5)0.34256 (10)0.0474 (7)
O10.9360 (3)0.2295 (5)0.43114 (9)0.0609 (7)
C1−0.3341 (4)−0.2970 (7)0.26535 (15)0.0635 (11)
H1B−0.4331−0.33260.24770.076*
O20.8001 (3)0.5582 (4)0.46914 (11)0.0680 (8)
C2−0.2463 (5)−0.1064 (7)0.25292 (15)0.0592 (10)
H2B−0.2866−0.01250.22670.071*
C3−0.0992 (4)−0.0518 (6)0.27874 (13)0.0488 (9)
H3A−0.04200.07930.27010.059*
C4−0.0363 (4)−0.1919 (6)0.31746 (12)0.0426 (8)
C5−0.1259 (4)−0.3852 (6)0.32996 (14)0.0537 (9)
H5A−0.0857−0.48130.35580.064*
C6−0.2737 (5)−0.4344 (7)0.30415 (16)0.0632 (11)
H6A−0.3334−0.56240.31310.076*
C70.1609 (4)0.0524 (6)0.35336 (12)0.0467 (8)
H7A0.08550.16990.34580.056*
C80.3215 (4)0.1149 (6)0.37721 (12)0.0433 (8)
C90.3412 (4)0.3236 (6)0.40197 (15)0.0586 (10)
H9A0.25340.42550.40170.070*
C100.4877 (4)0.3840 (6)0.42707 (14)0.0564 (10)
H10A0.49820.52410.44410.068*
C110.6192 (4)0.2351 (6)0.42680 (12)0.0435 (8)
C120.6034 (4)0.0265 (6)0.40118 (14)0.0549 (10)
H12A0.6925−0.07260.40040.066*
C130.4555 (4)−0.0325 (6)0.37695 (14)0.0537 (9)
H13A0.4447−0.17290.36010.064*
C140.8121 (4)0.1617 (7)0.51489 (13)0.0603 (10)
H14A0.91190.19630.53460.090*
H14B0.8065−0.00150.50820.090*
H14C0.72060.20670.53270.090*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0448 (5)0.0432 (5)0.0537 (6)0.0085 (4)0.0032 (4)0.0064 (4)
N0.0488 (16)0.0410 (17)0.0523 (17)0.0068 (14)0.0040 (13)0.0032 (14)
O10.0459 (13)0.0773 (19)0.0610 (16)0.0114 (13)0.0130 (11)0.0111 (14)
C10.053 (2)0.066 (3)0.071 (3)−0.004 (2)−0.0011 (19)−0.007 (2)
O20.0654 (16)0.0407 (14)0.094 (2)0.0054 (13)−0.0148 (15)−0.0008 (14)
C20.058 (2)0.060 (3)0.059 (2)0.010 (2)−0.0002 (19)0.007 (2)
C30.053 (2)0.0402 (19)0.054 (2)0.0019 (17)0.0059 (17)0.0059 (17)
C40.0486 (19)0.0355 (18)0.0449 (19)0.0070 (16)0.0099 (15)−0.0033 (16)
C50.062 (2)0.040 (2)0.060 (2)0.0055 (18)0.0112 (19)0.0028 (17)
C60.064 (2)0.047 (2)0.081 (3)−0.008 (2)0.015 (2)−0.001 (2)
C70.050 (2)0.043 (2)0.047 (2)0.0093 (16)0.0067 (16)−0.0008 (17)
C80.0459 (19)0.0406 (19)0.0437 (19)0.0078 (15)0.0044 (15)0.0014 (15)
C90.050 (2)0.045 (2)0.079 (3)0.0195 (18)−0.0019 (19)−0.008 (2)
C100.052 (2)0.042 (2)0.074 (3)0.0153 (17)−0.0066 (19)−0.0130 (19)
C110.0469 (18)0.0373 (19)0.047 (2)0.0096 (15)0.0088 (15)0.0063 (15)
C120.048 (2)0.044 (2)0.073 (3)0.0183 (17)0.0069 (19)−0.0034 (19)
C130.054 (2)0.039 (2)0.068 (2)0.0087 (17)0.0065 (18)−0.0107 (18)
C140.061 (2)0.066 (3)0.054 (2)0.018 (2)0.0050 (18)0.008 (2)

Geometric parameters (Å, °)

S—O11.428 (2)C6—H6A0.9300
S—O21.440 (3)C7—C81.463 (5)
S—C141.750 (4)C7—H7A0.9300
S—C111.760 (4)C8—C91.381 (5)
N—C71.264 (4)C8—C131.391 (4)
N—C41.416 (4)C9—C101.375 (5)
C1—C21.372 (5)C9—H9A0.9300
C1—C61.372 (5)C10—C111.380 (4)
C1—H1B0.9300C10—H10A0.9300
C2—C31.379 (5)C11—C121.389 (5)
C2—H2B0.9300C12—C131.373 (5)
C3—C41.386 (4)C12—H12A0.9300
C3—H3A0.9300C13—H13A0.9300
C4—C51.393 (5)C14—H14A0.9600
C5—C61.377 (5)C14—H14B0.9600
C5—H5A0.9300C14—H14C0.9600
O1—S—O2118.61 (17)N—C7—H7A118.4
O1—S—C14108.15 (16)C8—C7—H7A118.4
O2—S—C14108.70 (19)C9—C8—C13118.4 (3)
O1—S—C11108.39 (15)C9—C8—C7119.6 (3)
O2—S—C11107.63 (15)C13—C8—C7122.1 (3)
C14—S—C11104.47 (17)C10—C9—C8121.5 (3)
C7—N—C4118.1 (3)C10—C9—H9A119.3
C2—C1—C6119.1 (4)C8—C9—H9A119.3
C2—C1—H1B120.5C9—C10—C11119.4 (3)
C6—C1—H1B120.5C9—C10—H10A120.3
C1—C2—C3121.0 (4)C11—C10—H10A120.3
C1—C2—H2B119.5C10—C11—C12120.1 (3)
C3—C2—H2B119.5C10—C11—S119.3 (3)
C2—C3—C4120.1 (3)C12—C11—S120.6 (2)
C2—C3—H3A119.9C13—C12—C11119.6 (3)
C4—C3—H3A119.9C13—C12—H12A120.2
C3—C4—C5118.6 (3)C11—C12—H12A120.2
C3—C4—N122.3 (3)C12—C13—C8121.0 (3)
C5—C4—N119.0 (3)C12—C13—H13A119.5
C6—C5—C4120.2 (4)C8—C13—H13A119.5
C6—C5—H5A119.9S—C14—H14A109.5
C4—C5—H5A119.9S—C14—H14B109.5
C1—C6—C5120.9 (4)H14A—C14—H14B109.5
C1—C6—H6A119.6S—C14—H14C109.5
C5—C6—H6A119.6H14A—C14—H14C109.5
N—C7—C8123.2 (3)H14B—C14—H14C109.5
C6—C1—C2—C30.1 (6)C8—C9—C10—C111.2 (6)
C1—C2—C3—C41.0 (6)C9—C10—C11—C120.3 (6)
C2—C3—C4—C5−1.0 (5)C9—C10—C11—S179.6 (3)
C2—C3—C4—N175.0 (3)O1—S—C11—C10−144.6 (3)
C7—N—C4—C342.2 (5)O2—S—C11—C10−15.2 (3)
C7—N—C4—C5−141.8 (3)C14—S—C11—C10100.2 (3)
C3—C4—C5—C60.0 (5)O1—S—C11—C1234.7 (3)
N—C4—C5—C6−176.1 (3)O2—S—C11—C12164.1 (3)
C2—C1—C6—C5−1.0 (6)C14—S—C11—C12−80.5 (3)
C4—C5—C6—C11.0 (6)C10—C11—C12—C13−1.3 (5)
C4—N—C7—C8−177.2 (3)S—C11—C12—C13179.5 (3)
N—C7—C8—C9−159.4 (4)C11—C12—C13—C80.7 (6)
N—C7—C8—C1318.9 (5)C9—C8—C13—C120.7 (6)
C13—C8—C9—C10−1.7 (6)C7—C8—C13—C12−177.6 (3)
C7—C8—C9—C10176.6 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2398).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Qian, S.-S. & Cui, H.-Y. (2009). Acta Cryst. E65, o3072. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography