PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o157.
Published online 2009 December 16. doi:  10.1107/S1600536809053458
PMCID: PMC2980116

(2E)-1-(3-Chloro­phen­yl)-3-phenyl­prop-2-en-1-one

Abstract

In the title compound, C15H11ClO, the dihedral angle between the mean planes of the benzene ring and the chloro-substituted benzene ring is 48.8 (3)°. The dihedral angles between the mean plane of the prop-2-ene-1-one group and the mean planes of the 3-chloro­phenyl and benzene rings are 27.0 (4) and 27.9 (3)°, respectively. In the crystal, weak inter­molecular C—H(...)π-ring inter­actions occur.

Related literature

For background to chalcones, see: Chen et al. (1994 [triangle]); Marais et al. (2005 [triangle]); Poornesh et al. (2009 [triangle]); Ram et al. (2000 [triangle]); Sarojini et al. (2006 [triangle]); Shettigar et al. (2006 [triangle], 2008 [triangle]); Troeberg et al. (2000 [triangle]). For related structures, see: Jasinski et al. (2007 [triangle]); Li & Su (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o157-scheme1.jpg

Experimental

Crystal data

  • C15H11ClO
  • M r = 242.69
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o157-efi1.jpg
  • a = 5.8388 (7) Å
  • b = 7.5975 (11) Å
  • c = 13.1300 (16) Å
  • α = 83.182 (11)°
  • β = 89.422 (10)°
  • γ = 86.662 (11)°
  • V = 577.35 (13) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 2.74 mm−1
  • T = 110 K
  • 0.50 × 0.32 × 0.28 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.541, T max = 1.000
  • 3661 measured reflections
  • 2243 independent reflections
  • 2148 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.099
  • S = 1.02
  • 2243 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97) (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809053458/tk2596sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053458/tk2596Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KV thanks the UGC for the sanction of a Junior Research Fellowship and for a SAP Chemical grant. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Chalcones are known as the precursors of all flavonoid type natural products in biosynthesis (Marais et al., 2005). Chalcones exhibit various biological activities like insecticidal, antimicrobial, antichinoviral, antipicorniviral and bacteriostatic properties. Azachalcones, the derivatives of chalcones with an annular nitrogen atom in the phenyl ring, were reported to have a wide range of biological activities, such as antibacterial, antituberculostatic and anti-inflammatory. An important feature of chalcones are their ability to act as activated unsaturated systems in conjugated addition of carbanions in presence of suitable basic catalysts. Many chalcones have been described for their high antimalarial activity, probably as a result of Michael addition of nucleophilic species to the double bond of the enone (Troeberg et al., 2000; Ram et al., 2000). Licochalcone A, isolated from Chinese liquorice roots, has been reported as being highly effective in chloroquine resistant Plasmodium falciparum strains in a [3H] hypoxanthine uptake assay (Chen et al., 1994). Chalcones are also finding applications as organic non-linear optical materials (NLO) due to their good SHG conversion efficiencies (Sarojini et al., 2006). Recently, non-linear optical studies on a few chalcones and their derivatives were reported (Poornesh et al., 2009; Shettigar et al., 2006; 2008). In continuation with our studies of chalcones (Jasinski et al., 2007) and their derivatives and owing to the importance of these flavanoid analogs, the title chalcone, (I), was synthesized and its crystal structure reported herein.

The title compound, (I), is a chalcone with 3-chlorophenyl and benzene rings bonded at the opposite ends of a propenone group, the biologically active region (Fig.1). The dihedral angle between mean planes of the benzene and chloro substituted benzene rings is 48.8 (3)° as compared to 14.3 (7)° in the 4-chloro benzene analogue compound (Li & Su, 1994). The angles between the mean plane of the prop-2-ene-1-one group and the mean planes of the 3-chlorophenyl and benzene rings are 27.0 (4)° and 27.9 (3)°, respectively, as compared to 19.4 (2)° and 11.9 (9)° in the aforementioned 4-chloro benzene compound. While no classical hydrogen bonds are present, weak intermolecular C–H···π-ring interactions are observed which contribute to the stability of crystal packing (Table 1).

Experimental

50% KOH was added to a mixture of 3-chloro acetophenone (0.01 mol) and benzaldehyde (0.01 mol) in 25 ml of ethanol (Scheme 2). The mixture was stirred for an hour at room temperature and the precipitate was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from ethyl acetate by slow evaporation method and yield of the compound was 72% (m.p.: 354–356 K). Analytical data for C15H11ClO: Found (Calculated): C%: 74.19 (74.23); H%: 4.55 (4.57).

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95 Å, and with Uiso(H) = 1.17–1.22Ueq(C).

Figures

Fig. 1.
Molecular structure of (I), showing the atom labeling scheme and 50% probability displacement ellipsoids.

Crystal data

C15H11ClOZ = 2
Mr = 242.69F(000) = 252
Triclinic, P1Dx = 1.396 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 5.8388 (7) ÅCell parameters from 3077 reflections
b = 7.5975 (11) Åθ = 5.9–73.8°
c = 13.1300 (16) ŵ = 2.74 mm1
α = 83.182 (11)°T = 110 K
β = 89.422 (10)°Prism, colorless
γ = 86.662 (11)°0.50 × 0.32 × 0.28 mm
V = 577.35 (13) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector2243 independent reflections
Radiation source: Enhance (Cu) X-ray Source2148 reflections with I > 2σ(I)
graphiteRint = 0.017
Detector resolution: 10.5081 pixels mm-1θmax = 73.8°, θmin = 5.9°
ω scansh = −7→5
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)k = −9→9
Tmin = 0.541, Tmax = 1.000l = −16→15
3661 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0647P)2 + 0.2987P] where P = (Fo2 + 2Fc2)/3
2243 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl0.32652 (6)0.68985 (5)0.56518 (3)0.02296 (15)
O0.27901 (18)0.72419 (15)0.96930 (8)0.0224 (3)
C10.5736 (2)0.67070 (18)0.84979 (11)0.0160 (3)
C20.4270 (2)0.69988 (18)0.76536 (11)0.0162 (3)
H2A0.27590.75100.77190.019*
C30.5060 (3)0.65289 (19)0.67198 (11)0.0165 (3)
C40.7258 (3)0.57602 (19)0.66031 (12)0.0189 (3)
H4A0.77710.54480.59560.023*
C50.8677 (3)0.54612 (19)0.74507 (12)0.0193 (3)
H5A1.01700.49160.73870.023*
C60.7950 (2)0.59463 (19)0.83940 (12)0.0177 (3)
H6A0.89550.57620.89660.021*
C70.4848 (3)0.72066 (19)0.95085 (11)0.0175 (3)
C80.6548 (3)0.7663 (2)1.02521 (12)0.0192 (3)
H8A0.80810.78501.00350.023*
C90.5952 (2)0.78129 (19)1.12239 (11)0.0170 (3)
H9A0.44230.75601.14180.020*
C100.7434 (2)0.83314 (19)1.20198 (11)0.0161 (3)
C110.9534 (3)0.90987 (19)1.17865 (11)0.0180 (3)
H11A1.00360.92931.10940.022*
C121.0875 (3)0.95730 (19)1.25607 (12)0.0194 (3)
H12A1.22871.01031.23960.023*
C131.0172 (3)0.9280 (2)1.35792 (12)0.0217 (3)
H13A1.11070.96001.41080.026*
C140.8103 (3)0.8519 (2)1.38218 (12)0.0221 (3)
H14A0.76230.83131.45170.026*
C150.6734 (3)0.80576 (19)1.30478 (12)0.0185 (3)
H15A0.53090.75521.32170.022*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.0222 (2)0.0308 (2)0.0164 (2)0.00195 (15)−0.00390 (14)−0.00610 (14)
O0.0149 (5)0.0340 (6)0.0190 (5)−0.0032 (4)0.0000 (4)−0.0044 (4)
C10.0171 (7)0.0139 (6)0.0173 (7)−0.0054 (5)0.0001 (5)−0.0010 (5)
C20.0140 (7)0.0149 (7)0.0198 (7)−0.0028 (5)0.0000 (5)−0.0019 (5)
C30.0177 (7)0.0173 (7)0.0152 (7)−0.0036 (5)−0.0023 (5)−0.0031 (5)
C40.0209 (7)0.0165 (7)0.0203 (7)−0.0034 (5)0.0034 (6)−0.0050 (6)
C50.0145 (7)0.0156 (7)0.0277 (8)−0.0003 (5)0.0009 (6)−0.0030 (6)
C60.0161 (7)0.0160 (7)0.0208 (7)−0.0032 (5)−0.0023 (5)−0.0001 (5)
C70.0175 (7)0.0168 (7)0.0179 (7)−0.0030 (5)−0.0005 (5)−0.0002 (5)
C80.0166 (7)0.0213 (7)0.0199 (7)−0.0033 (6)−0.0009 (6)−0.0023 (6)
C90.0143 (7)0.0154 (7)0.0212 (7)−0.0003 (5)−0.0004 (5)−0.0021 (5)
C100.0155 (7)0.0139 (6)0.0188 (7)0.0015 (5)−0.0010 (5)−0.0030 (5)
C110.0173 (7)0.0175 (7)0.0189 (7)−0.0001 (5)0.0011 (5)−0.0024 (5)
C120.0161 (7)0.0156 (7)0.0264 (8)−0.0011 (5)−0.0017 (6)−0.0020 (6)
C130.0228 (8)0.0201 (7)0.0227 (8)0.0003 (6)−0.0064 (6)−0.0046 (6)
C140.0268 (8)0.0221 (8)0.0171 (7)0.0001 (6)0.0010 (6)−0.0027 (6)
C150.0172 (7)0.0166 (7)0.0220 (8)−0.0010 (5)0.0029 (6)−0.0032 (6)

Geometric parameters (Å, °)

Cl—C31.7452 (15)C8—H8A0.9500
O—C71.2226 (19)C9—C101.467 (2)
C1—C21.396 (2)C9—H9A0.9500
C1—C61.397 (2)C10—C151.402 (2)
C1—C71.502 (2)C10—C111.404 (2)
C2—C31.385 (2)C11—C121.383 (2)
C2—H2A0.9500C11—H11A0.9500
C3—C41.393 (2)C12—C131.391 (2)
C4—C51.383 (2)C12—H12A0.9500
C4—H4A0.9500C13—C141.387 (2)
C5—C61.389 (2)C13—H13A0.9500
C5—H5A0.9500C14—C151.389 (2)
C6—H6A0.9500C14—H14A0.9500
C7—C81.483 (2)C15—H15A0.9500
C8—C91.335 (2)
C2—C1—C6120.12 (14)C7—C8—H8A119.6
C2—C1—C7118.15 (13)C8—C9—C10126.15 (14)
C6—C1—C7121.73 (13)C8—C9—H9A116.9
C3—C2—C1118.72 (13)C10—C9—H9A116.9
C3—C2—H2A120.6C15—C10—C11118.75 (13)
C1—C2—H2A120.6C15—C10—C9119.08 (13)
C2—C3—C4121.96 (13)C11—C10—C9122.18 (13)
C2—C3—Cl119.50 (11)C12—C11—C10120.27 (14)
C4—C3—Cl118.54 (11)C12—C11—H11A119.9
C5—C4—C3118.53 (14)C10—C11—H11A119.9
C5—C4—H4A120.7C11—C12—C13120.46 (14)
C3—C4—H4A120.7C11—C12—H12A119.8
C4—C5—C6120.91 (14)C13—C12—H12A119.8
C4—C5—H5A119.5C14—C13—C12119.92 (14)
C6—C5—H5A119.5C14—C13—H13A120.0
C5—C6—C1119.74 (14)C12—C13—H13A120.0
C5—C6—H6A120.1C13—C14—C15119.97 (14)
C1—C6—H6A120.1C13—C14—H14A120.0
O—C7—C8122.19 (14)C15—C14—H14A120.0
O—C7—C1120.25 (13)C14—C15—C10120.63 (14)
C8—C7—C1117.56 (13)C14—C15—H15A119.7
C9—C8—C7120.80 (14)C10—C15—H15A119.7
C9—C8—H8A119.6
C6—C1—C2—C3−0.3 (2)O—C7—C8—C912.5 (2)
C7—C1—C2—C3−179.41 (12)C1—C7—C8—C9−168.11 (14)
C1—C2—C3—C40.7 (2)C7—C8—C9—C10−177.12 (13)
C1—C2—C3—Cl−179.48 (10)C8—C9—C10—C15−166.17 (15)
C2—C3—C4—C50.1 (2)C8—C9—C10—C1114.0 (2)
Cl—C3—C4—C5−179.76 (11)C15—C10—C11—C120.0 (2)
C3—C4—C5—C6−1.2 (2)C9—C10—C11—C12179.79 (13)
C4—C5—C6—C11.6 (2)C10—C11—C12—C130.6 (2)
C2—C1—C6—C5−0.8 (2)C11—C12—C13—C14−0.5 (2)
C7—C1—C6—C5178.26 (12)C12—C13—C14—C15−0.2 (2)
C2—C1—C7—O26.0 (2)C13—C14—C15—C100.9 (2)
C6—C1—C7—O−153.08 (14)C11—C10—C15—C14−0.7 (2)
C2—C1—C7—C8−153.42 (13)C9—C10—C15—C14179.46 (13)
C6—C1—C7—C827.50 (19)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring and Cg2 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cg2i0.952.903.5541 (16)127
C5—H5A···Cg2ii0.952.903.5338 (17)125
C12—H12A···Cg1iii0.952.923.6040 (17)130

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+2, −y+1, −z+2; (iii) −x+2, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2596).

References

  • Chen, M., Theander, T. G., Christensen, S. B., Hviid, L., Zhai, L. & Kharazmi, A. (1994). Antimicrob. Agents Chemother.38, 1470–1475. [PMC free article] [PubMed]
  • Jasinski, J. P., Butcher, R. J., Lakshmana, K., Narayana, B. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4715.
  • Li, Z. & Su, G. (1994). Acta Cryst. C50, 126–127.
  • Marais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochemistry, 66, 2145–2176. [PubMed]
  • Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Poornesh, P., Shettigar, S., Umesh, G., Manjunatha, K. B., Prakash Kamath, K., Sarojini, B. K. & Narayana, B. (2009). Opt. Mat.31, 854–859.
  • Ram, V. J., Saxena, A. S., Srivastava, S. & Chandra, S. (2000). Bioorg. Med. Chem. Lett.10, 2159–2161. [PubMed]
  • Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565–3567.
  • Shettigar, S., Umesh, G., Chandrasekharan, K., Sarojini, B. K. & Narayana, B. (2008). Opt. Mat.30, 1297–1303.
  • Troeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Springer, H. C., McKerrow, J. H., Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. & Cohen, F. E. (2000). Mol. Med.6, 660–669. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography