PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o2.
Published online 2009 December 4. doi:  10.1107/S1600536809048879
PMCID: PMC2980110

3-Dimethyl­amino-1-(4-methyl­phen­yl)prop-2-en-1-one

Abstract

In the title compound, C12H15NO, the C=C and C=O functional groups and the benzene ring are involved in an extended conjugated system. The mol­ecules are essentially planar with a maximal deviation from planarity for the non-H atoms of 0.062 (2) Å.

Related literature

For the pharmaceutical activity of enamino­nes, see: Edafiogh et al. (2003 [triangle]); Eddington et al. (2003 [triangle]). For the use of enamino­nes as chelating ligands for main group metals and transition metals in coordination chemistry, see: Cindrić et al. (2004 [triangle]); Shi et al. (2008 [triangle]). For the chemical synthesis of enamino­nes, see: Kantevari et al. (2007 [triangle]); Ke et al. (2009 [triangle]). For the crystal structures of enamino­nes, see: Lemmerer et al. (2007 [triangle]); Bertolasi et al. (1999 [triangle]); Blake et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-000o2-scheme1.jpg

Experimental

Crystal data

  • C12H15NO
  • M r = 189.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-000o2-efi1.jpg
  • a = 8.7918 (17) Å
  • b = 5.9506 (12) Å
  • c = 20.789 (4) Å
  • β = 99.300 (3)°
  • V = 1073.3 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 173 K
  • 0.08 × 0.06 × 0.03 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.994, T max = 0.998
  • 5180 measured reflections
  • 2290 independent reflections
  • 1731 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.150
  • S = 1.02
  • 2290 reflections
  • 130 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2005 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809048879/vm2013sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048879/vm2013Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Research Plan Project of Guangdong Province for financial surpport (05552838).

supplementary crystallographic information

Comment

Enaminones and their metal complexes have been widely studied due to their applications in the fields of optical chemistry, medicinal chemistry and biotechnology. Those ligands are versatile synthetic intermediates that combine the ambident nucleophilicity of enamines with the ambident electrophilicity of enones and have been extensively used for the preparation of a variety of heterocyclic systems including some natural products and analogues. Moreover, in coordination chemistry, enaminones can be used as good chelating ligands for main group metals and transition metals (Cindrić et al., 2004; Shi et al.,2008). We report here the synthesis and structure of the title compound. The molecular structure of the title compound is shown in Fig.1. The molecule crystallized as an E isomer with extended conjugation involving N, C=C, C=O, and the benzene ring. As a consequence the molecule is planar, the maximal deviation from planarity for the non-hydrogen atoms is 0.062 (2) Å.

Experimental

A solution of 4-Methylacetophenone (13.2 g, 0.1 mol) in ethyl formate (14.8 g, 0.2 mol) was added dropwise to a stirred suspension of sodium ethoxide(6.8 g, 0.1 mol) in anhydrous diethyl ether (50 ml) at room temperature. After stirring for 4 h, 8.8 g Dimethylamine hydrochloride (0.11 mol) in 20 ml water was added dropwise to the stirred suspended matter, and it was stirred for another 2 h. Then, the organic phase was separated, and the solvent was removed on a rotary evaporator, the residual was recrystallized in hexane-acetone (10:1) in an afford of the title compound (15.2 g). Crystals were obtained by slow evaporation of a solution in diethyl ether at room temperature.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–0.98 Å.

Figures

Fig. 1.
The structure of the title compound, with displacement ellipsoids at the 30% probability level.

Crystal data

C12H15NOF(000) = 408
Mr = 189.25Dx = 1.171 Mg m3
Monoclinic, P21/cMelting point: 367 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.7918 (17) ÅCell parameters from 1291 reflections
b = 5.9506 (12) Åθ = 3.1–28.6°
c = 20.789 (4) ŵ = 0.07 mm1
β = 99.300 (3)°T = 173 K
V = 1073.3 (4) Å3Plate, colourless
Z = 40.08 × 0.06 × 0.03 mm

Data collection

Bruker APEX CCD diffractometer2290 independent reflections
Radiation source: fine-focus sealed tube1731 reflections with I > 2σ(I)
graphiteRint = 0.023
ω and phi scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −10→10
Tmin = 0.994, Tmax = 0.998k = −7→7
5180 measured reflectionsl = −11→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0918P)2 + 0.1894P] where P = (Fo2 + 2Fc2)/3
2290 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.19626 (13)0.51500 (19)0.07917 (6)0.0490 (4)
N1−0.15817 (14)0.0530 (2)0.05528 (6)0.0327 (3)
C10.84154 (18)0.1518 (3)0.24118 (8)0.0439 (4)
H1A0.8475−0.00020.25960.066*
H1B0.86260.26190.27650.066*
H1C0.91790.16800.21200.066*
C20.68222 (16)0.1912 (2)0.20336 (7)0.0308 (3)
C30.64246 (17)0.3950 (3)0.17274 (7)0.0346 (4)
H3A0.71790.51010.17440.042*
C40.49477 (17)0.4341 (2)0.13971 (7)0.0318 (3)
H4A0.47050.57530.11930.038*
C50.38156 (16)0.2684 (2)0.13621 (6)0.0271 (3)
C60.42232 (16)0.0632 (2)0.16573 (7)0.0302 (3)
H6A0.3478−0.05350.16320.036*
C70.57032 (17)0.0256 (3)0.19896 (7)0.0328 (4)
H7A0.5952−0.11610.21900.039*
C80.22148 (16)0.3234 (2)0.10167 (7)0.0301 (3)
C90.10551 (16)0.1520 (2)0.09670 (7)0.0291 (3)
H9A0.12990.00870.11570.035*
C10−0.03947 (16)0.1940 (2)0.06473 (7)0.0296 (3)
H10A−0.05780.34080.04720.036*
C11−0.1441 (2)−0.1751 (3)0.07988 (9)0.0442 (4)
H11A−0.0440−0.23680.07390.066*
H11B−0.2268−0.26750.05600.066*
H11C−0.1520−0.17520.12640.066*
C12−0.30880 (17)0.1211 (3)0.02142 (8)0.0411 (4)
H12A−0.30260.27400.00450.062*
H12B−0.38330.11750.05180.062*
H12C−0.34210.0178−0.01480.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0387 (7)0.0328 (6)0.0712 (9)−0.0016 (5)−0.0038 (6)0.0170 (6)
N10.0276 (6)0.0359 (7)0.0341 (7)−0.0024 (5)0.0035 (5)−0.0010 (5)
C10.0330 (9)0.0542 (10)0.0421 (9)0.0026 (7)−0.0008 (7)−0.0023 (8)
C20.0276 (7)0.0373 (8)0.0274 (7)0.0008 (6)0.0047 (5)−0.0040 (6)
C30.0325 (8)0.0346 (8)0.0367 (8)−0.0090 (6)0.0056 (6)−0.0041 (6)
C40.0360 (8)0.0261 (7)0.0335 (8)−0.0030 (6)0.0065 (6)0.0026 (6)
C50.0283 (7)0.0286 (7)0.0250 (7)−0.0013 (5)0.0062 (5)−0.0018 (5)
C60.0299 (7)0.0280 (7)0.0326 (8)−0.0030 (6)0.0050 (6)0.0013 (6)
C70.0356 (8)0.0318 (8)0.0309 (7)0.0028 (6)0.0048 (6)0.0031 (6)
C80.0321 (8)0.0280 (7)0.0305 (7)0.0006 (6)0.0056 (6)0.0015 (6)
C90.0286 (8)0.0282 (7)0.0307 (7)0.0004 (6)0.0055 (6)0.0019 (6)
C100.0316 (8)0.0288 (7)0.0296 (7)−0.0003 (6)0.0083 (6)−0.0007 (6)
C110.0457 (10)0.0360 (9)0.0512 (10)−0.0103 (7)0.0090 (8)−0.0011 (7)
C120.0285 (8)0.0562 (11)0.0377 (8)−0.0011 (7)0.0031 (6)−0.0056 (7)

Geometric parameters (Å, °)

O1—C81.2388 (18)C5—C81.509 (2)
N1—C101.3288 (18)C6—C71.389 (2)
N1—C111.448 (2)C6—H6A0.9500
N1—C121.453 (2)C7—H7A0.9500
C1—C21.510 (2)C8—C91.434 (2)
C1—H1A0.9800C9—C101.362 (2)
C1—H1B0.9800C9—H9A0.9500
C1—H1C0.9800C10—H10A0.9500
C2—C71.385 (2)C11—H11A0.9800
C2—C31.388 (2)C11—H11B0.9800
C3—C41.387 (2)C11—H11C0.9800
C3—H3A0.9500C12—H12A0.9800
C4—C51.395 (2)C12—H12B0.9800
C4—H4A0.9500C12—H12C0.9800
C5—C61.387 (2)
C10—N1—C11121.29 (13)C2—C7—C6121.09 (13)
C10—N1—C12121.85 (13)C2—C7—H7A119.5
C11—N1—C12116.84 (13)C6—C7—H7A119.5
C2—C1—H1A109.5O1—C8—C9123.07 (13)
C2—C1—H1B109.5O1—C8—C5118.41 (13)
H1A—C1—H1B109.5C9—C8—C5118.52 (12)
C2—C1—H1C109.5C10—C9—C8120.19 (13)
H1A—C1—H1C109.5C10—C9—H9A119.9
H1B—C1—H1C109.5C8—C9—H9A119.9
C7—C2—C3117.91 (13)N1—C10—C9127.35 (14)
C7—C2—C1120.88 (14)N1—C10—H10A116.3
C3—C2—C1121.21 (14)C9—C10—H10A116.3
C4—C3—C2121.32 (13)N1—C11—H11A109.5
C4—C3—H3A119.3N1—C11—H11B109.5
C2—C3—H3A119.3H11A—C11—H11B109.5
C3—C4—C5120.69 (14)N1—C11—H11C109.5
C3—C4—H4A119.7H11A—C11—H11C109.5
C5—C4—H4A119.7H11B—C11—H11C109.5
C6—C5—C4117.92 (13)N1—C12—H12A109.5
C6—C5—C8123.77 (13)N1—C12—H12B109.5
C4—C5—C8118.31 (13)H12A—C12—H12B109.5
C5—C6—C7121.06 (13)N1—C12—H12C109.5
C5—C6—H6A119.5H12A—C12—H12C109.5
C7—C6—H6A119.5H12B—C12—H12C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2013).

References

  • Bertolasi, V., Gilli, P., Ferretti, V., Gilli, G., Vaughan, K. & Jollimore, J. V. (1999). Acta Cryst B55, 994–1004. [PubMed]
  • Blake, A. J., McNab, H., Monahan, L. C., Parsons, S. & Stevenson, E. (1996). Acta Cryst. C52, 2814–2818.
  • Bruker (2005). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cindrić, M., Vrdoljak, V. & Strukan, N. (2004). Inorg. Chim. Acta, 357, 931–938.
  • Edafiogh, I. O., Ananthalakshmi, K. V. V. & Kombian, S. B. (2003). Bioorg. Med. Chem.14, 5266–5272. [PubMed]
  • Eddington, N. D., Cox, S. D. & Khurana, M. (2003). Eur. J. Med. Chem 38, 49–64. [PubMed]
  • Kantevari, S., Chary, M. V. & Vuppalapati, S. V. N. (2007). Tetrahedron, 63, 13024–13031.
  • Ke, Y. Y., Li, Y. J. & Jia, J. H. (2009). Tetrahedron Lett 50, 1389–1391.
  • Lemmerer, A., Michael, J. P., Pienaar, D. P. & Sannasy, D. (2007). Acta Cryst. E63, o98–o99.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, Y. C., Cheng, H. J. & Zhang, S. H. (2008). Polyhedron, 27, 3331–3336.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography