PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o122.
Published online 2009 December 12. doi:  10.1107/S1600536809052222
PMCID: PMC2980107

N,N′-Dicyclo­hexyl­ethyl­enediammonium dichloride

Abstract

In the title compound, C14H30N2 2+·2Cl, the N,N′-dicyclo­hexyl­ethyl­enediammonium cation posseses crystallographic An external file that holds a picture, illustration, etc.
Object name is e-66-0o122-efi3.jpg symmetry, and thus the compound crystallizes with two formula units per unit cell. In the crystal, the cations and anions are linked by N—H(...)Cl hydrogen bonds, giving a two-dimensional network with {6,3} topology.

Related literature

For the crystal structures of cyclo­hexyl­ammonium derivatives, see Smith et al. (1994 [triangle]); Martell & Zaworotko (1991 [triangle]). For the crystal structure of an iridium complex with the N,N′-dicyclo­hexyl­ethyl­enediamine ligand, see: Greulich et al. (2002 [triangle]). For a review of hydrogen bonding, see Steiner (2002 [triangle]). N,N′-dicyclo­hexyl­ethyl­enediamine was prepared according to Denk et al. (2003 [triangle]). For the topology of {6,3} ring systems and three-dimensional polyhedra and networks, see: Wells & Sharpe (1963 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o122-scheme1.jpg

Experimental

Crystal data

  • C14H30N2 2+·2Cl
  • M r = 297.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o122-efi4.jpg
  • a = 11.551 (3) Å
  • b = 6.785 (2) Å
  • c = 10.8434 (17) Å
  • β = 91.892 (15)°
  • V = 849.3 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 293 K
  • 0.65 × 0.28 × 0.12 mm

Data collection

  • Stoe STADI4 diffractometer
  • 3349 measured reflections
  • 1675 independent reflections
  • 1430 reflections with I > 2σ(I)
  • R int = 0.036
  • 2 standard reflections every 120 min
  • intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.089
  • S = 1.10
  • 1675 reflections
  • 142 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: STADI4 (Stoe & Cie, 1996 [triangle]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1996 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2009 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809052222/si2221sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052222/si2221Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Compared to other N,N'-disubstituted ethylenediamine compounds RNH-CH2CH2—NHR (R = Me, Ph, etc.) N,N'-Dicyclohexylethylenediamine derivatives have been studied only rarely by X-ray diffraction. One of the few examples is the Iridium complex [Cp*(CyNHCH2CH2NHCy)HIr][H3BCN] (Greulich et al., 2002).

The crystal structure of the title compound (Fig. 1) consists of [CyNH2CH2CH2NH2Cy]2+ cations and Cl- anions. The [CyNH2CH2CH2NH2Cy]2+ cations exhibit crystallographic 1 symmetry and thus an exactly staggered conformation with a N—C—C—N torsion angle of 180 ° is observed. The N atoms display a distorted tetrahedral coordination with H—N—C angles of 108.6 to 111.2 and a C—N—C angle of 114.50 (1)°. The cyclohexyl groups adopt a chair conformation (Fig. 2) as it was observed in [Cp*(CyNHCH2CH2NHCy)HIr][H3BCN] (Greulich et al., 2002). Both hydrogen atoms of the NH2 groups are involved in hydrogen bridges to neighbouring Cl- anions. The NH···Cl distances of 2.20 (2) and 2.30 (2) Å are comparable to those found in other cyclohexylammonium derivatives like [CyNH3]Cl (2.187–2.35.4 Å) (Smith et al., 1994) and [CyNH3]2(AlCl4)Cl (2.305–2.478 Å) (Martell & Zaworotko, 1991) respectively. The N—H···Cl angles of 169 (2)° and 176 (2)° are in the expected range for hydrogen bridges of moderate strength (Steiner, 2002).

On balance each [CyNH2CH2CH2NH2Cy]2+ cation forms four N—H···Cl bridges to neighbouring Cl- anions and each Cl- anion acts as H-acceptor for two NH hydrogen atoms. As a result of the hydrogen bonding between [CyNH2CH2CH2NH2Cy]2+ cations and Cl- anions a two-dimensional layer structure is formed. The layers consist of puckered C4H8N6Cl4 rings that are interconnected to give a honeycomb arrangement with {6,3} net topology (Wells & Sharpe, 1963).

Experimental

An excess of hydrochloric acid was added dropwise to a solution of N,N'-Dicyclohexylethylenediamine monohydrate (1.11 g, 5 mmol) prepared by standard techniques (Denk et al., 2003) in a ethanol/water mixture(10:1, 20 ml) and stirred for 6 h at 140 °C in an autoclave. The mixture was slowly cooled to ambient temperature and colourless plate-like crystals were obtained. Spectroscopic data: 1H NMR (D2O, 500 MHz, 298 K, p.p.m.): δ 1.07–1.99 (m, 20 H, CH2, Cy), 3.09 (m, 2H, CH), 3.32 (s, 4H, CH2); 13C NMR (D2O, 125 MHz, 298 K, p.p.m.): δ 23.7 (s, CH2, Cy: C4, C6), 24.3 (s, CH2, Cy: C5), 26.7 (s, CH2, Cy: C3, C7), 40.0 (s, CH2), 57.934 (s, CH, Cy).

Figures

Fig. 1.
Molecular structure of the [CyNH2CH2CH2NH2Cy]2+ cation with surrounding Cl- anions. The asymmetric unit is shown by filled bonds. Thermal ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) -x, -y, -z; (ii) -x, -1/2 + y, 1.5 - z; (iii) ...
Fig. 2.
Part of the layer structure formed by hydrogen bonded [CyNH2CH2CH2NH2Cy]2+ cations and Cl- anions. Cyclohexyl groups are omitted for clarity.

Crystal data

C14H30N22+·2ClF(000) = 324
Mr = 297.30Dx = 1.163 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 22 reflections
a = 11.551 (3) Åθ = 10.2–14.6°
b = 6.785 (2) ŵ = 0.37 mm1
c = 10.8434 (17) ÅT = 293 K
β = 91.892 (15)°Plate, colourless
V = 849.3 (4) Å30.65 × 0.28 × 0.12 mm
Z = 2

Data collection

Stoe STADI4 diffractometerRint = 0.036
Radiation source: fine-focus sealed tubeθmax = 26.1°, θmin = 1.8°
graphiteh = −14→14
2θ/ω scansk = −8→0
3349 measured reflectionsl = −13→13
1675 independent reflections2 standard reflections every 120 min
1430 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.0304P)2 + 0.223P] where P = (Fo2 + 2Fc2)/3
1675 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.05608 (15)0.4477 (3)0.48641 (16)0.0404 (4)
H20.1138 (18)0.537 (3)0.4631 (19)0.054 (6)*
H10.0449 (18)0.353 (3)0.419 (2)0.059 (6)*
C20.21086 (13)0.2307 (2)0.58171 (14)0.0342 (3)
H50.2039 (14)0.163 (3)0.5053 (16)0.038 (4)*
C30.22533 (16)0.0777 (3)0.6834 (2)0.0478 (5)
H60.2248 (18)0.147 (3)0.763 (2)0.059 (6)*
H70.1619 (18)−0.009 (4)0.6755 (18)0.058 (6)*
C40.33978 (18)−0.0313 (3)0.6726 (3)0.0574 (5)
H80.3397 (19)−0.095 (3)0.596 (2)0.063 (7)*
H90.346 (2)−0.123 (4)0.738 (2)0.069 (7)*
C50.44122 (17)0.1104 (3)0.6751 (2)0.0513 (5)
H100.4456 (18)0.173 (3)0.757 (2)0.064 (6)*
H110.516 (2)0.045 (3)0.668 (2)0.068 (6)*
C60.42621 (16)0.2660 (3)0.5755 (2)0.0522 (5)
H120.4254 (18)0.198 (3)0.497 (2)0.064 (6)*
H130.492 (2)0.354 (4)0.581 (2)0.075 (7)*
C70.31115 (15)0.3757 (3)0.58388 (18)0.0419 (4)
H140.3073 (17)0.447 (3)0.6637 (19)0.054 (6)*
H150.3005 (17)0.466 (3)0.5188 (18)0.053 (6)*
N0.09763 (12)0.3358 (2)0.59677 (13)0.0335 (3)
H40.1015 (17)0.416 (3)0.6647 (19)0.052 (6)*
H30.0454 (17)0.257 (3)0.6169 (17)0.045 (5)*
Cl0.12073 (4)0.59342 (7)0.83342 (4)0.04938 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0421 (9)0.0418 (9)0.0375 (8)0.0074 (8)0.0039 (7)0.0097 (7)
C20.0376 (8)0.0297 (8)0.0351 (8)0.0025 (6)−0.0004 (6)−0.0027 (6)
C30.0413 (10)0.0349 (9)0.0670 (13)−0.0006 (8)−0.0007 (8)0.0165 (9)
C40.0521 (11)0.0354 (9)0.0838 (16)0.0089 (9)−0.0074 (10)0.0073 (11)
C50.0405 (10)0.0492 (11)0.0638 (12)0.0098 (8)−0.0038 (8)0.0007 (9)
C60.0391 (9)0.0583 (12)0.0596 (12)0.0033 (9)0.0088 (8)0.0046 (10)
C70.0383 (9)0.0361 (9)0.0514 (10)−0.0011 (7)0.0039 (7)0.0081 (8)
N0.0338 (7)0.0314 (7)0.0352 (7)−0.0018 (6)0.0011 (5)0.0043 (6)
Cl0.0569 (3)0.0446 (3)0.0467 (3)0.0160 (2)0.00215 (19)−0.00631 (19)

Geometric parameters (Å, °)

C1—N1.484 (2)C4—H80.94 (2)
C1—C1i1.514 (3)C4—H90.95 (2)
C1—H20.94 (2)C5—C61.516 (3)
C1—H10.98 (2)C5—H100.98 (2)
C2—N1.503 (2)C5—H110.98 (2)
C2—C71.519 (2)C6—C71.529 (2)
C2—C31.519 (2)C6—H120.97 (2)
C2—H50.948 (18)C6—H130.97 (3)
C3—C41.523 (3)C7—H140.99 (2)
C3—H60.98 (2)C7—H150.94 (2)
C3—H70.94 (2)N—H40.91 (2)
C4—C51.515 (3)N—H30.84 (2)
N—C1—C1i109.80 (17)C4—C5—C6111.01 (17)
N—C1—H2109.4 (13)C4—C5—H10108.0 (13)
C1i—C1—H2111.7 (12)C6—C5—H10109.9 (13)
N—C1—H1107.3 (13)C4—C5—H11113.4 (14)
C1i—C1—H1111.1 (12)C6—C5—H11109.8 (13)
H2—C1—H1107.4 (17)H10—C5—H11104.5 (18)
N—C2—C7110.89 (13)C5—C6—C7112.07 (16)
N—C2—C3108.69 (13)C5—C6—H12107.2 (13)
C7—C2—C3111.44 (15)C7—C6—H12107.4 (13)
N—C2—H5106.0 (10)C5—C6—H13108.4 (14)
C7—C2—H5111.7 (10)C7—C6—H13112.4 (14)
C3—C2—H5107.9 (11)H12—C6—H13109.2 (18)
C2—C3—C4110.54 (17)C2—C7—C6110.34 (15)
C2—C3—H6108.0 (12)C2—C7—H14105.8 (12)
C4—C3—H6109.2 (12)C6—C7—H14110.7 (12)
C2—C3—H7107.1 (13)C2—C7—H15109.3 (12)
C4—C3—H7111.5 (13)C6—C7—H15111.5 (12)
H6—C3—H7110.5 (17)H14—C7—H15109.1 (17)
C5—C4—C3111.30 (17)C1—N—C2114.50 (13)
C5—C4—H8106.8 (14)C1—N—H4110.6 (12)
C3—C4—H8108.5 (14)C2—N—H4110.5 (13)
C5—C4—H9111.3 (14)C1—N—H3108.6 (13)
C3—C4—H9107.9 (14)C2—N—H3111.1 (13)
H8—C4—H9111 (2)H4—N—H3100.6 (17)
N—C2—C3—C4−179.40 (16)C3—C2—C7—C655.7 (2)
C7—C2—C3—C4−56.9 (2)C5—C6—C7—C2−54.8 (2)
C2—C3—C4—C556.5 (3)C1i—C1—N—C2−178.21 (18)
C3—C4—C5—C6−55.5 (3)C7—C2—N—C173.57 (19)
C4—C5—C6—C754.9 (2)C3—C2—N—C1−163.61 (15)
N—C2—C7—C6176.95 (14)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N—H4···Cl0.91 (2)2.20 (2)3.1088 (16)175.8 (18)
N—H3···Clii0.84 (2)2.30 (2)3.1250 (16)168.8 (18)

Symmetry codes: (ii) −x, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2221).

References

  • Brandenburg, K. (2009). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Denk, M. K., Krause, M. J., Niyogi, D. F. & Gill, N. K. (2003). Tetrahedron, 59, 7565–7570.
  • Greulich, S., Klein, A., Knödler, A. & Kaim, W. (2002). Organometallics, 21, 765–769.
  • Martell, J. M. & Zaworotko, M. (1991). J. Chem. Soc. Dalton Trans. pp. 1495–1498.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, H. W., Mastropaolo, D., Camerman, A. & Camerman, N. (1994). J. Chem. Crystallogr.24, 239–242.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Steiner, T. (2002). Angew. Chem. Int. Ed.41, 48–76. [PubMed]
  • Stoe & Cie, (1996). STADI4 and X-RED Stoe & Cie, Darmstadt, Germany.
  • Wells, A. F. & Sharpe, R. R. (1963). Acta Cryst.16, 857–871.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography