PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o38.
Published online 2009 December 4. doi:  10.1107/S1600536809051277
PMCID: PMC2980106

2,6-Bis(4-methoxy­phen­yl)-4-phenyl­pyridine

Abstract

In the title compound, C25H21NO2, which was synthesized by the condensation of 2,6-bis­(4-methoxy­phen­yl)-4-phenyl­pyridinium tetra­fluoro­borate with ammonia under microwave irradiation and solvent-free conditions, the angles between the central pyridine ring and the three benzene rings are 22.3 (2), 35.3 (2) and 19.8 (2)°. In the crystal, inter­molecular C—H(...)π hydrogen-bond inter­actions link the mol­ecules.

Related literature

For the biological properties of pyridines, see Keys & Hamilton (1987 [triangle]); Chen et al.(1995 [triangle]). For related structures, see: Ondráček et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00o38-scheme1.jpg

Experimental

Crystal data

  • C25H21NO2
  • M r = 367.43
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00o38-efi1.jpg
  • a = 6.379 (3) Å
  • b = 15.538 (8) Å
  • c = 20.51 (1) Å
  • β = 94.281 (7)°
  • V = 2027.3 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 298 K
  • 0.41 × 0.18 × 0.08 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.970, T max = 0.994
  • 10098 measured reflections
  • 3566 independent reflections
  • 1522 reflections with I > 2σ(I)
  • R int = 0.109

Refinement

  • R[F 2 > 2σ(F 2)] = 0.099
  • wR(F 2) = 0.191
  • S = 1.04
  • 3566 reflections
  • 255 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809051277/bq2177sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051277/bq2177Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges the support of the Foundation of Tianshui Normal University.

supplementary crystallographic information

Comment

It was well known that pyridine ring systems have represented an important class of compounds not only for their theoretical interest but also because they displayed strong biological activity (Keys, et al., 1987). Moreover, pyridine derivatives have remarkable versatility in synthetic organic chemistry as intermediates in the preparation of nature products and as ligands recently used in asymmetric synthesis (Chen, et al., 1995).

In this paper, we present a new crystal, 2,6-bis(4'-methoxyphenyl)-4-phenylpyridine, (I), which was synthesized using benzaldehyde and 4-methoxylacetophenone as starting material.

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in reported the compound (Ondráček et al., 1994). The angles between the center pyridine ring and benzene rings (c6 - c11), (c13 - c18) and (c19 - c24) are 22.28 (19)°, 35.29 (18)° and 19.81 (20)°, respectively, which show the pyridine ring and three benzene rings aren't coplanar. Moreover, the crystal supramolecular structure was built from the connections of C—H···π hydrogen bonding interactions, as shown in Table 1 and Fig. 2.

Experimental

Benzaldehyde (0.3 mmol) and 4-methoxylacetophenone (0.6 mmol), ammonia (1.0 mmol) under boron trifluoride ether (0.1 mmol) catalyzed, the mixture were mixed in 50 ml flash. After eradiating 3 min at 375 W, the mixture then cooled slowly to room temperature affording the title compound, then recrystallized from ethanol, affording the title compound as a colorless crystalline solid. Elemental analysis: calculated for C25H21NO2: C 81.72, H 5.76, N 3.81%; found: C 81.68, H 5.75, N 3.72%.

Refinement

All H atoms were positioned geometrically, with C—H=0.93- 0.96 Å, and refined as riding, with Uiso(H)=1.2–1.5Ueq(C).

Figures

Fig. 1.
ORTEP drawing of the title complex with atomic numbering scheme and thermal ellipsoids at 30% probability level.
Fig. 2.
The one-dimensional chain structure was built by the C—H···π H-bond interactions (dashed lines).

Crystal data

C25H21NO2F(000) = 776
Mr = 367.43Dx = 1.204 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 964 reflections
a = 6.379 (3) Åθ = 2.6–25.1°
b = 15.538 (8) ŵ = 0.08 mm1
c = 20.51 (1) ÅT = 298 K
β = 94.281 (7)°Needle, colourless
V = 2027.3 (17) Å30.41 × 0.18 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer3566 independent reflections
Radiation source: fine-focus sealed tube1522 reflections with I > 2σ(I)
graphiteRint = 0.109
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→7
Tmin = 0.970, Tmax = 0.994k = −18→16
10098 measured reflectionsl = −24→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.099Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0521P)2 + 0.3542P] where P = (Fo2 + 2Fc2)/3
3566 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.2077 (6)0.7947 (2)0.20968 (17)0.0595 (10)
O1−0.0669 (6)0.8942 (2)0.49408 (14)0.0804 (11)
O2−0.0509 (6)0.9151 (2)−0.08307 (14)0.0762 (10)
C10.2860 (7)0.7601 (3)0.2683 (2)0.0539 (12)
C20.4486 (7)0.7015 (3)0.2720 (2)0.0608 (13)
H20.49840.68060.31270.073*
C30.5412 (7)0.6725 (3)0.2161 (2)0.0569 (12)
C40.4592 (7)0.7086 (3)0.1567 (2)0.0602 (13)
H40.51560.69270.11800.072*
C50.2955 (7)0.7675 (3)0.1551 (2)0.0550 (12)
C60.1864 (7)0.7938 (3)0.3266 (2)0.0542 (12)
C7−0.0101 (8)0.8304 (3)0.3224 (2)0.0724 (15)
H7−0.08540.83180.28170.087*
C8−0.1032 (8)0.8657 (3)0.3762 (2)0.0759 (16)
H8−0.23560.89090.37120.091*
C90.0074 (8)0.8620 (3)0.4375 (2)0.0613 (13)
C100.2024 (8)0.8247 (3)0.4432 (2)0.0637 (14)
H100.27530.82160.48410.076*
C110.2932 (7)0.7916 (3)0.3894 (2)0.0619 (13)
H110.42680.76750.39470.074*
C12−0.2641 (9)0.9374 (4)0.4904 (2)0.105 (2)
H12A−0.26140.98430.46000.157*
H12B−0.29060.95920.53280.157*
H12C−0.37340.89780.47590.157*
C130.7134 (7)0.6082 (3)0.2196 (2)0.0548 (12)
C140.7190 (8)0.5414 (3)0.2660 (2)0.0671 (14)
H140.61170.53670.29400.081*
C150.8826 (9)0.4826 (3)0.2703 (2)0.0787 (16)
H150.88300.43870.30110.094*
C161.0438 (9)0.4878 (3)0.2299 (3)0.0758 (16)
H161.15410.44860.23350.091*
C171.0390 (9)0.5529 (4)0.1837 (3)0.0803 (16)
H171.14730.55730.15600.096*
C180.8745 (8)0.6116 (3)0.1782 (2)0.0685 (14)
H180.87270.65390.14620.082*
C190.2008 (8)0.8072 (3)0.0924 (2)0.0543 (12)
C200.0029 (8)0.8437 (3)0.0891 (2)0.0613 (13)
H20−0.07150.84380.12640.074*
C21−0.0899 (7)0.8807 (3)0.0316 (2)0.0645 (13)
H21−0.22330.90500.03070.077*
C220.0210 (8)0.8803 (3)−0.0238 (2)0.0605 (13)
C230.2184 (8)0.8437 (3)−0.0216 (2)0.0661 (14)
H230.29220.8432−0.05900.079*
C240.3083 (7)0.8077 (3)0.0356 (2)0.0641 (13)
H240.44190.78350.03620.077*
C25−0.2637 (9)0.9444 (4)−0.0914 (2)0.0928 (18)
H25A−0.35660.8985−0.08130.139*
H25B−0.29490.9623−0.13590.139*
H25C−0.28260.9921−0.06270.139*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.071 (3)0.063 (3)0.045 (2)0.004 (2)0.001 (2)0.001 (2)
O10.098 (3)0.090 (3)0.056 (2)0.012 (2)0.022 (2)−0.0092 (19)
O20.093 (3)0.089 (3)0.045 (2)0.004 (2)−0.0074 (18)0.0110 (17)
C10.068 (3)0.055 (3)0.039 (3)0.007 (3)0.005 (2)0.001 (2)
C20.076 (4)0.063 (3)0.042 (3)0.011 (3)0.001 (2)0.002 (2)
C30.068 (3)0.058 (3)0.044 (3)0.002 (3)0.001 (2)0.000 (2)
C40.074 (4)0.065 (3)0.042 (3)0.007 (3)0.008 (3)−0.002 (2)
C50.065 (3)0.058 (3)0.042 (3)0.002 (3)0.003 (2)0.000 (2)
C60.059 (3)0.059 (3)0.044 (3)0.009 (3)0.000 (2)0.002 (2)
C70.076 (4)0.098 (4)0.042 (3)0.010 (3)0.001 (3)−0.002 (3)
C80.068 (4)0.101 (4)0.058 (3)0.022 (3)0.000 (3)−0.002 (3)
C90.069 (4)0.072 (4)0.045 (3)0.002 (3)0.013 (3)−0.001 (3)
C100.077 (4)0.076 (4)0.037 (3)0.007 (3)0.001 (3)−0.001 (2)
C110.069 (3)0.066 (3)0.049 (3)0.013 (3)−0.002 (3)0.003 (3)
C120.092 (5)0.138 (5)0.089 (4)0.011 (4)0.033 (4)−0.029 (4)
C130.063 (3)0.054 (3)0.046 (3)0.004 (3)−0.002 (2)−0.008 (2)
C140.072 (4)0.072 (4)0.057 (3)0.010 (3)0.006 (3)0.006 (3)
C150.092 (5)0.073 (4)0.070 (4)0.008 (4)−0.007 (4)0.005 (3)
C160.082 (4)0.066 (4)0.077 (4)0.015 (3)−0.011 (3)−0.016 (3)
C170.076 (4)0.091 (4)0.074 (4)0.004 (3)0.007 (3)−0.015 (3)
C180.074 (4)0.068 (4)0.064 (3)0.008 (3)0.010 (3)0.002 (3)
C190.064 (3)0.059 (3)0.040 (3)0.001 (2)0.003 (2)0.000 (2)
C200.068 (4)0.076 (4)0.041 (3)0.000 (3)0.011 (2)0.004 (2)
C210.069 (3)0.076 (4)0.047 (3)0.009 (3)−0.004 (3)0.004 (3)
C220.078 (4)0.065 (3)0.037 (3)−0.002 (3)−0.002 (3)0.001 (2)
C230.073 (4)0.084 (4)0.041 (3)0.007 (3)0.006 (3)−0.002 (3)
C240.065 (3)0.077 (4)0.049 (3)0.006 (3)−0.003 (3)0.003 (3)
C250.089 (5)0.114 (5)0.070 (4)0.009 (4)−0.024 (3)0.015 (3)

Geometric parameters (Å, °)

N1—C51.356 (5)C12—H12B0.9600
N1—C11.376 (5)C12—H12C0.9600
O1—C91.379 (5)C13—C181.381 (6)
O1—C121.423 (5)C13—C141.406 (6)
O2—C221.378 (5)C14—C151.385 (6)
O2—C251.430 (5)C14—H140.9300
C1—C21.378 (5)C15—C161.370 (6)
C1—C61.491 (5)C15—H150.9300
C2—C31.402 (5)C16—C171.384 (6)
C2—H20.9300C16—H160.9300
C3—C41.406 (5)C17—C181.388 (6)
C3—C131.483 (6)C17—H170.9300
C4—C51.387 (5)C18—H180.9300
C4—H40.9300C19—C201.381 (6)
C5—C191.512 (6)C19—C241.394 (5)
C6—C71.373 (6)C20—C211.403 (5)
C6—C111.412 (5)C20—H200.9300
C7—C81.404 (6)C21—C221.382 (6)
C7—H70.9300C21—H210.9300
C8—C91.396 (5)C22—C231.379 (6)
C8—H80.9300C23—C241.385 (5)
C9—C101.369 (6)C23—H230.9300
C10—C111.383 (5)C24—H240.9300
C10—H100.9300C25—H25A0.9600
C11—H110.9300C25—H25B0.9600
C12—H12A0.9600C25—H25C0.9600
C5—N1—C1117.0 (4)C18—C13—C14117.4 (4)
C9—O1—C12119.0 (4)C18—C13—C3121.8 (4)
C22—O2—C25118.8 (4)C14—C13—C3120.7 (4)
N1—C1—C2121.9 (4)C15—C14—C13120.7 (5)
N1—C1—C6114.5 (4)C15—C14—H14119.6
C2—C1—C6123.5 (4)C13—C14—H14119.6
C1—C2—C3121.9 (4)C16—C15—C14121.2 (5)
C1—C2—H2119.1C16—C15—H15119.4
C3—C2—H2119.1C14—C15—H15119.4
C2—C3—C4115.3 (4)C15—C16—C17118.5 (5)
C2—C3—C13122.2 (4)C15—C16—H16120.7
C4—C3—C13122.4 (4)C17—C16—H16120.7
C5—C4—C3121.0 (4)C16—C17—C18120.9 (5)
C5—C4—H4119.5C16—C17—H17119.6
C3—C4—H4119.5C18—C17—H17119.6
N1—C5—C4122.8 (4)C13—C18—C17121.2 (5)
N1—C5—C19114.4 (4)C13—C18—H18119.4
C4—C5—C19122.8 (4)C17—C18—H18119.4
C7—C6—C11116.3 (4)C20—C19—C24117.5 (4)
C7—C6—C1122.4 (4)C20—C19—C5121.0 (4)
C11—C6—C1121.2 (4)C24—C19—C5121.5 (4)
C6—C7—C8123.3 (4)C19—C20—C21122.4 (4)
C6—C7—H7118.3C19—C20—H20118.8
C8—C7—H7118.3C21—C20—H20118.8
C9—C8—C7118.5 (4)C22—C21—C20118.6 (5)
C9—C8—H8120.7C22—C21—H21120.7
C7—C8—H8120.7C20—C21—H21120.7
C10—C9—O1116.7 (4)O2—C22—C23115.7 (4)
C10—C9—C8119.3 (4)O2—C22—C21124.5 (5)
O1—C9—C8124.1 (5)C23—C22—C21119.8 (4)
C9—C10—C11121.4 (4)C22—C23—C24120.9 (4)
C9—C10—H10119.3C22—C23—H23119.5
C11—C10—H10119.3C24—C23—H23119.5
C10—C11—C6121.1 (4)C23—C24—C19120.7 (4)
C10—C11—H11119.4C23—C24—H24119.6
C6—C11—H11119.4C19—C24—H24119.6
O1—C12—H12A109.5O2—C25—H25A109.5
O1—C12—H12B109.5O2—C25—H25B109.5
H12A—C12—H12B109.5H25A—C25—H25B109.5
O1—C12—H12C109.5O2—C25—H25C109.5
H12A—C12—H12C109.5H25A—C25—H25C109.5
H12B—C12—H12C109.5H25B—C25—H25C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C25—H25C···Cg1i0.962.823.605140

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2177).

References

  • Chen, C., Tagami, K. & Kishi, Y. (1995). J. Org. Chem.60, 5386–5387.
  • Keys, L. D. & Hamilton, G. A. (1987). J. Am. Chem. Soc.109, 2156–2163.
  • Ondráček, J., Novotný, J., Petrů, M., Lhoták, P. & Kuthan, J. (1994). Acta Cryst. C50, 1809–1811.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography