PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m14.
Published online 2009 December 4. doi:  10.1107/S1600536809051629
PMCID: PMC2980104

Bis[2-(cyclo­hexyl­imino­meth­yl)-5-methoxy­phenolato]copper(II)

Abstract

In the title centrosymmetric mononuclear complex, [Cu(C14H18NO2)2], the CuII ion, lying on an inversion centre, is four-coordinated by two imine N and two phenolate O atoms from two Schiff base ligands, forming a slightly distorted square-planar geometry.

Related literature

For general background to copper complexes, see: Collinson & Fenton (1996 [triangle]); Hossain et al. (1996 [triangle]); Tarafder et al. (2002 [triangle]); Musie et al. (2003 [triangle]); García-Raso et al. (2003 [triangle]); Reddy et al. (2000 [triangle]); Ray et al. (2003 [triangle]); Arnold et al. (2003 [triangle]); Raptopoulou et al. (1998 [triangle]). For related structures, see: Miao (2005 [triangle], 2006 [triangle]); Wang (2007 [triangle]); Zhang (2004 [triangle]); Akitsu & Einaga (2004 [triangle]); Bluhm et al. (2003 [triangle]); Castillo et al. (2003 [triangle]); Lacroix et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00m14-scheme1.jpg

Experimental

Crystal data

  • [Cu(C14H18NO2)2]
  • M r = 528.13
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00m14-efi1.jpg
  • a = 6.4557 (10) Å
  • b = 11.5170 (17) Å
  • c = 17.074 (3) Å
  • β = 99.138 (2)°
  • V = 1253.4 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.91 mm−1
  • T = 298 K
  • 0.23 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.818, T max = 0.839
  • 6860 measured reflections
  • 2727 independent reflections
  • 2232 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.080
  • S = 1.04
  • 2727 reflections
  • 161 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051629/ci2979sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051629/ci2979Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges Baoji University of Arts and Sciences for funding this study (grant No. ZK0831).

supplementary crystallographic information

Comment

In the last few years there has been a burgeoning effort to identify the biological activities of copper, primarily through techniques associated with the interface of biology/biochemistry/coordination chemistry (Collinson & Fenton, 1996; Hossain et al., 1996; Tarafder et al., 2002). It appears that the biological role of copper is primarily in redox reactions and as a biological catalyst, although much remains to be understood (Musie et al., 2003; García-Raso et al., 2003). An extensive effort has been made to prepare and characterize a variety of copper(II) coordination complexes in an attempt to model the physical and chemical behaviour of copper-containing enzymes (Reddy et al., 2000). The peculiarity of copper lies in its ability to form complexes with coordination number four, five or six (Ray et al., 2003; Arnold et al., 2003; Raptopoulou et al., 1998). As an extension of the work on the structural characterization of such complexes (Miao, 2005, 2006), the crystal structure of the title new mononuclear copper(II) compound, is reported here.

The compound is a centrosymmetric mononuclear copper(II) complex, as shown in Fig. 1. The CuII ion, lying on an inversion centre, is four-coordinated by two imine N and two phenolate O atoms from two Schiff base ligands, forming a square-planar geometry. The Cu—O and Cu—N bond lengths are comparable with those reported in similar structures (Wang, 2007; Zhang, 2004; Akitsu & Einaga, 2004; Bluhm et al., 2003; Castillo et al., 2003; Lacroix et al., 2004). Both cyclohexane rings adopt chair conformations.

Experimental

4-Methoxysalicylaldehyde (1 mmol, 152 mg), cyclohexylamine (1 mmol, 99 mg) and Cu(CH3COO)2.H2O (0.5 mmol, 100 mg) were dissolved in methanol (50 ml). The mixture was stirred at room temperature for 1 h to give a blue solution. The resulting solution was kept in air for 5 d, and block blue crystals were formed.

Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% displacement ellipsoids (arbitrary spheres for the H atoms). Unlabelled atoms are at the symmetry position (-x, -y, -z).

Crystal data

[Cu(C14H18NO2)2]F(000) = 558
Mr = 528.13Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2706 reflections
a = 6.4557 (10) Åθ = 2.4–28.7°
b = 11.5170 (17) ŵ = 0.91 mm1
c = 17.074 (3) ÅT = 298 K
β = 99.138 (2)°Block, blue
V = 1253.4 (3) Å30.23 × 0.20 × 0.20 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer2727 independent reflections
Radiation source: fine-focus sealed tube2232 reflections with I > 2σ(I)
graphiteRint = 0.021
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −6→8
Tmin = 0.818, Tmax = 0.839k = −14→14
6860 measured reflectionsl = −17→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0393P)2 + 0.3443P] where P = (Fo2 + 2Fc2)/3
2727 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.00000.00000.00000.02741 (11)
N10.2825 (2)−0.05099 (13)0.05759 (8)0.0279 (3)
O1−0.02292 (18)0.11030 (12)0.08083 (8)0.0369 (3)
O20.2183 (2)0.44832 (13)0.22866 (8)0.0435 (3)
C10.3444 (3)0.13149 (15)0.12935 (10)0.0293 (4)
C20.1333 (3)0.17066 (15)0.11880 (10)0.0290 (4)
C30.0893 (3)0.27716 (16)0.15350 (11)0.0324 (4)
H3−0.04880.30250.14920.039*
C40.2490 (3)0.34426 (15)0.19372 (10)0.0321 (4)
C50.4579 (3)0.30770 (17)0.20160 (12)0.0377 (4)
H50.56540.35430.22710.045*
C60.5013 (3)0.20248 (16)0.17120 (11)0.0350 (4)
H60.63960.17690.17840.042*
C70.4013 (3)0.01873 (15)0.10362 (11)0.0314 (4)
H70.5373−0.00640.12200.038*
C80.3570 (3)−0.17037 (15)0.04404 (11)0.0292 (4)
H80.3409−0.1818−0.01350.035*
C90.5849 (3)−0.19822 (16)0.07803 (12)0.0344 (4)
H9A0.6775−0.14590.05550.041*
H9B0.6075−0.18710.13510.041*
C100.6355 (3)−0.32350 (17)0.05889 (14)0.0425 (5)
H10A0.7792−0.34090.08200.051*
H10B0.6229−0.33270.00190.051*
C110.4882 (3)−0.40877 (17)0.09089 (14)0.0448 (5)
H11A0.5208−0.48730.07630.054*
H11B0.5082−0.40410.14830.054*
C120.2621 (3)−0.38098 (17)0.05739 (14)0.0455 (5)
H12A0.1699−0.43330.08010.055*
H12B0.2392−0.39270.00040.055*
C130.2090 (3)−0.25579 (16)0.07562 (13)0.0389 (4)
H13A0.2194−0.24610.13250.047*
H13B0.0656−0.23910.05170.047*
C140.0085 (4)0.48443 (19)0.23134 (17)0.0591 (7)
H14A−0.06760.48920.17840.089*
H14B0.01000.55920.25620.089*
H14C−0.05830.42920.26120.089*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02394 (16)0.02709 (17)0.02975 (17)0.00081 (12)−0.00020 (11)−0.00354 (12)
N10.0262 (7)0.0262 (7)0.0306 (8)0.0021 (6)0.0025 (6)0.0001 (6)
O10.0262 (6)0.0415 (7)0.0409 (7)0.0005 (5)−0.0011 (5)−0.0141 (6)
O20.0426 (8)0.0368 (8)0.0501 (8)−0.0028 (6)0.0043 (6)−0.0145 (7)
C10.0277 (9)0.0301 (9)0.0289 (9)−0.0006 (7)0.0011 (7)−0.0003 (7)
C20.0281 (9)0.0321 (9)0.0260 (8)−0.0018 (7)0.0018 (7)0.0001 (7)
C30.0274 (9)0.0356 (10)0.0335 (9)0.0023 (7)0.0024 (7)−0.0039 (8)
C40.0396 (10)0.0278 (9)0.0287 (9)−0.0018 (8)0.0045 (8)−0.0017 (7)
C50.0327 (10)0.0374 (11)0.0412 (11)−0.0090 (8)−0.0001 (8)−0.0053 (9)
C60.0269 (9)0.0371 (10)0.0393 (10)−0.0012 (8)0.0005 (7)−0.0015 (8)
C70.0251 (9)0.0355 (10)0.0325 (9)0.0015 (7)0.0014 (7)0.0025 (7)
C80.0275 (9)0.0278 (9)0.0322 (9)0.0027 (7)0.0040 (7)0.0009 (7)
C90.0280 (9)0.0311 (10)0.0439 (11)0.0013 (7)0.0047 (8)0.0026 (8)
C100.0333 (10)0.0361 (11)0.0592 (13)0.0076 (8)0.0107 (9)0.0050 (9)
C110.0474 (12)0.0291 (10)0.0588 (13)0.0049 (9)0.0115 (10)0.0069 (9)
C120.0433 (11)0.0317 (10)0.0634 (14)−0.0039 (9)0.0143 (10)0.0029 (10)
C130.0297 (9)0.0347 (10)0.0537 (12)−0.0009 (8)0.0111 (8)0.0024 (9)
C140.0502 (13)0.0549 (15)0.0724 (17)0.0048 (11)0.0106 (12)−0.0306 (12)

Geometric parameters (Å, °)

Cu1—O1i1.8987 (12)C8—C91.527 (2)
Cu1—O11.8987 (12)C8—C131.528 (2)
Cu1—N1i2.0169 (14)C8—H80.98
Cu1—N12.0169 (14)C9—C101.526 (3)
N1—C71.288 (2)C9—H9A0.97
N1—C81.487 (2)C9—H9B0.97
O1—C21.309 (2)C10—C111.527 (3)
O2—C41.367 (2)C10—H10A0.97
O2—C141.424 (3)C10—H10B0.97
C1—C61.406 (2)C11—C121.515 (3)
C1—C21.420 (2)C11—H11A0.97
C1—C71.437 (2)C11—H11B0.97
C2—C31.411 (2)C12—C131.525 (3)
C3—C41.381 (2)C12—H12A0.97
C3—H30.93C12—H12B0.97
C4—C51.399 (3)C13—H13A0.97
C5—C61.365 (3)C13—H13B0.97
C5—H50.93C14—H14A0.96
C6—H60.93C14—H14B0.96
C7—H70.93C14—H14C0.96
O1i—Cu1—O1180.00 (10)C13—C8—H8107.1
O1i—Cu1—N1i90.53 (5)C10—C9—C8110.06 (15)
O1—Cu1—N1i89.47 (5)C10—C9—H9A109.6
O1i—Cu1—N189.47 (5)C8—C9—H9A109.6
O1—Cu1—N190.53 (5)C10—C9—H9B109.6
N1i—Cu1—N1180.00 (11)C8—C9—H9B109.6
C7—N1—C8119.69 (15)H9A—C9—H9B108.2
C7—N1—Cu1121.37 (12)C9—C10—C11111.40 (16)
C8—N1—Cu1118.90 (11)C9—C10—H10A109.3
C2—O1—Cu1124.93 (11)C11—C10—H10A109.3
C4—O2—C14118.32 (15)C9—C10—H10B109.3
C6—C1—C2118.65 (16)C11—C10—H10B109.3
C6—C1—C7118.84 (16)H10A—C10—H10B108.0
C2—C1—C7122.36 (16)C12—C11—C10110.27 (17)
O1—C2—C3118.64 (15)C12—C11—H11A109.6
O1—C2—C1122.87 (16)C10—C11—H11A109.6
C3—C2—C1118.44 (16)C12—C11—H11B109.6
C4—C3—C2120.76 (16)C10—C11—H11B109.6
C4—C3—H3119.6H11A—C11—H11B108.1
C2—C3—H3119.6C11—C12—C13110.90 (17)
O2—C4—C3124.00 (17)C11—C12—H12A109.5
O2—C4—C5115.23 (16)C13—C12—H12A109.5
C3—C4—C5120.77 (17)C11—C12—H12B109.5
C6—C5—C4118.93 (17)C13—C12—H12B109.5
C6—C5—H5120.5H12A—C12—H12B108.0
C4—C5—H5120.5C12—C13—C8111.31 (15)
C5—C6—C1122.33 (17)C12—C13—H13A109.4
C5—C6—H6118.8C8—C13—H13A109.4
C1—C6—H6118.8C12—C13—H13B109.4
N1—C7—C1126.40 (17)C8—C13—H13B109.4
N1—C7—H7116.8H13A—C13—H13B108.0
C1—C7—H7116.8O2—C14—H14A109.5
N1—C8—C9116.81 (14)O2—C14—H14B109.5
N1—C8—C13107.74 (13)H14A—C14—H14B109.5
C9—C8—C13110.43 (15)O2—C14—H14C109.5
N1—C8—H8107.1H14A—C14—H14C109.5
C9—C8—H8107.1H14B—C14—H14C109.5

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2979).

References

  • Akitsu, T. & Einaga, Y. (2004). Acta Cryst. E60, m436–m438.
  • Arnold, P. J., Davies, S. C., Durrant, M. C., Griffiths, D. V., Hughes, D. L. & Sharpe, P. C. (2003). Inorg. Chim. Acta, 348, 143–149.
  • Bluhm, M. E., Ciesielski, M., Görls, H., Walter, O. & Döring, M. (2003). Inorg. Chem.42, 8878–8885. [PubMed]
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Castillo, I., Fernández-González, J. M. & Gárate-Morales, J. L. (2003). J. Mol. Struct.657, 25–35.
  • Collinson, S. R. & Fenton, D. E. (1996). Coord. Chem. Rev.148, 19–40.
  • García-Raso, Á., Fiol, J. J., López-Zafra, A., Castro, J. A., Cabrero, A., Mata, I. & Molins, E. (2003). Polyhedron, 22, 403–409.
  • Hossain, M. E., Alam, M. N., Begum, J., Ali, M. A., Nazimuddin, M., Smith, F. E. & Hynes, R. C. (1996). Inorg. Chim. Acta, 249, 207–213.
  • Lacroix, P. G., Averseng, F., Malfant, I. & Nakatani, K. (2004). Inorg. Chim. Acta, 357, 3825–3835.
  • Miao, J.-Y. (2005). Acta Cryst. E61, m1981–m1983.
  • Miao, J.-Y. (2006). Acta Cryst. E62, m3112–m3114.
  • Musie, G. T., Li, X. & Powell, D. R. (2003). Inorg. Chim. Acta, 348, 69–74.
  • Raptopoulou, C. P., Papadopoulos, A. N., Malamatari, D. A., Ioannidis, E., Moisidis, G., Terzis, A. & Kessissoglou, D. P. (1998). Inorg. Chim. Acta, 272, 283–290.
  • Ray, M. S., Bhattacharya, R. B., Chaudhuri, S., Righi, L., Bocelli, G., Mukhopadhyay, G. & Ghosh, A. (2003). Polyhedron, 22, 617–624.
  • Reddy, P. A. N., Datta, R. & Chakravarty, A. R. (2000). Inorg. Chem. Commun.3, 322–324.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547–2554.
  • Wang, C.-Y. (2007). Acta Cryst. E63, m489–m491.
  • Zhang, P. (2004). Acta Cryst. E60, m1808–m1810.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography