PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o51.
Published online 2009 December 4. doi:  10.1107/S1600536809051484
PMCID: PMC2980102

N-(3,5-Dichloro­phen­yl)maleamic acid

Abstract

In the title compound, C10H7Cl2NO3, the asymmetric unit contains four independent mol­ecules, which are linked to each other by N—H(...)O hydrogen bonds. The mol­ecular structure is stabilized by a short intra­molecular O—H(...)O hydrogen bond within each maleamic acid unit. In the crystal, the mol­ecules are linked into networks through N—H(...)O hydrogen bonds and inter­molecular C—Cl(...)O=C contacts [Cl(...)O = 3.0897 (12) and 3.0797 (13) Å].

Related literature

For studies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda, Foro et al. (2009 [triangle]); Gowda, Tokarčík et al. (2009 [triangle]); Lo & Ng (2009 [triangle]); Prasad et al. (2002 [triangle]); Shakuntala et al. (2009 [triangle]). For short halogen–oxygen contacts, see: Fourmigué (2009 [triangle]). Kubicki (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00o51-scheme1.jpg

Experimental

Crystal data

  • C10H7Cl2NO3
  • M r = 260.07
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00o51-efi1.jpg
  • a = 8.13786 (12) Å
  • b = 16.5293 (3) Å
  • c = 17.4170 (3) Å
  • α = 103.4502 (17)°
  • β = 100.6466 (15)°
  • γ = 99.5964 (15)°
  • V = 2184.79 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.58 mm−1
  • T = 295 K
  • 0.59 × 0.51 × 0.22 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer
  • Absorption correction: analytical (CrysAlis PRO, Oxford Diffraction, 2009 [triangle]) T min = 0.728, T max = 0.887
  • 46919 measured reflections
  • 8204 independent reflections
  • 6694 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.088
  • S = 1.09
  • 8204 reflections
  • 581 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809051484/dn2519sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051484/dn2519Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

In the present work, as a part of studying the effect of ring and side chain substitutions on the crystal structures of biologically significant amides (Gowda, Foro et al.,2009; Gowda, Tokarčík et al., 2009; Shakuntala et al., 2009; Prasad et al., 2002), the crystal structure of N-(3,5-dichlorophenyl)maleamic acid (I) has been determined.

The asymmetric unit of (I) contains four independent molecules linked to each other through N-H···O intermolecular hydrogen bonds(Table 1, Fig. 1). The conformations of the N—H and C=O bonds in the amide segment of the structure are anti to each other and those of the amide O atom and the carbonyl O atom of the acid segment are also anti to each other. But the amide O atom is anti to the H atom attached to the adjacent C atom, while the carboxyl O atom is syn to the H atom attached to its adjacent C atom (Fig.1). In the structure of (I), relatively rare anti conformation of the C=O and O—H bonds of the acid group has been observed, similar to that obsrved in N-phenylmaleamic acid (Lo & Ng, 2009), N-(3,4-dimethylphenyl)maleamic acid, N-(2,4,6-trimethylphenyl)- maleamic acid (Gowda,Tokarčík et al., 2009) and N-(2,5-dichlorophenyl)maleamic acid (Shakuntala et al., 2009).

Each maleamic unit includes a short intramolecular hydrogen O—H···O bond (Table 1). Bond lengths C12–C13 =1.329 (2), C22–C23 =1.336 (2), C32–C33 =1.335 (2) and C42–C43 =1.329 (2)Å clearly indicate the double bond character.

The dihedral angles between the dichloro-substituted phenyl ring and the amido group –NHCO– are 4.5 (3), 8.4 (2), 10.4 (2) and 8.3 (3)° in the four independent molecules.

In the crystal structure, the intermolecular N–H···O hydrogen bonds link the molecules into infinite chain running parallel to the [-1 1 1] vector. The relatively short Cl···O contacts build up a two-dimensional network. Part of the crystal structure is shown in Fig. 2. The molecule containing the amido atom N11 forms an inversion dimer, which is is stabilized by two short Cl···O contacts with the length of 3.0897 (12)Å. Another short Cl···O contact between the atoms Cl12 and O41(iii) has the length of 3.0797 (13) Å. [Symmetry code (iii): x, y-1, z-1].

Our data for the C–Cl···O halogen bonds are in agreement with the observations of others (Kubicki, 2004; Fourmigué 2009).

Experimental

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 3,5-dichloroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was warmed with stirring for over 30 min and set aside for an additional 30 min at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,5-dichloroaniline. The resultant solid N-(3,5-dichlorophenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra. Colourless single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement

All H atoms were visible in difference maps and further placed in calculated positions (C–H = 0.93 Å, N–H = 0.86 Å, N–H = 0.82 Å) and refined using the riding model. The Uiso(H) values were set at 1.2Ueq(C, N, O).

Figures

Fig. 1.
Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
Fig. 2.
Part of crystal structure of (I) showing the chain of molecules linked by N–H···O hydrogen bonds (represented by dashed lines). The molecule with the amido atom N11 forms an inversion dimer stabilized via short Cl···O ...

Crystal data

C10H7Cl2NO3Z = 8
Mr = 260.07F(000) = 1056
Triclinic, P1Dx = 1.581 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.13786 (12) ÅCell parameters from 29193 reflections
b = 16.5293 (3) Åθ = 2.0–29.5°
c = 17.4170 (3) ŵ = 0.58 mm1
α = 103.4502 (17)°T = 295 K
β = 100.6466 (15)°Block, colourless
γ = 99.5964 (15)°0.59 × 0.51 × 0.22 mm
V = 2184.79 (7) Å3

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer8204 independent reflections
graphite6694 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.017
ω scansθmax = 25.6°, θmin = 2.0°
Absorption correction: analytical (CrysAlis PRO, Oxford Diffraction, 2009)h = −9→9
Tmin = 0.728, Tmax = 0.887k = −20→20
46919 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0445P)2 + 0.4698P] where P = (Fo2 + 2Fc2)/3
8204 reflections(Δ/σ)max = 0.001
581 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11−0.12991 (7)−0.13131 (3)−0.04861 (4)0.07207 (17)
Cl120.08943 (6)−0.35296 (3)−0.26076 (3)0.05786 (14)
O110.38762 (19)0.06550 (8)−0.04674 (10)0.0728 (5)
O120.51265 (18)0.21919 (9)0.01320 (10)0.0688 (4)
H12A0.46690.1684−0.00540.103*
O130.72670 (19)0.30909 (8)0.00178 (9)0.0716 (4)
N110.42407 (17)−0.04601 (8)−0.14019 (8)0.0403 (3)
H110.4904−0.0625−0.17090.048*
C110.4692 (2)0.03579 (11)−0.09563 (10)0.0439 (4)
C120.6215 (2)0.08687 (11)−0.10927 (11)0.0473 (4)
H120.67670.0576−0.14530.057*
C130.6907 (2)0.16943 (11)−0.07690 (11)0.0499 (4)
H130.78790.1886−0.09410.060*
C140.6420 (2)0.23697 (11)−0.01833 (11)0.0465 (4)
C150.2796 (2)−0.10786 (10)−0.14214 (9)0.0369 (3)
C160.1585 (2)−0.08976 (11)−0.09764 (11)0.0448 (4)
H160.1701−0.0354−0.06410.054*
C170.0209 (2)−0.15445 (11)−0.10443 (11)0.0449 (4)
C18−0.0017 (2)−0.23577 (11)−0.15278 (10)0.0424 (4)
H18−0.0949−0.2785−0.15580.051*
C190.1201 (2)−0.25142 (10)−0.19677 (10)0.0391 (4)
C200.2594 (2)−0.18954 (10)−0.19278 (10)0.0382 (4)
H200.3390−0.2019−0.22330.046*
Cl210.84361 (9)0.77742 (3)0.13652 (4)0.07855 (19)
Cl220.89486 (6)0.54211 (3)−0.12381 (3)0.05692 (13)
O210.54916 (18)0.52453 (8)0.20423 (8)0.0567 (3)
O220.4351 (2)0.49126 (8)0.31739 (8)0.0650 (4)
H22A0.47120.50370.27970.097*
O230.36320 (18)0.37768 (9)0.35801 (8)0.0615 (4)
N210.63526 (17)0.45503 (8)0.09578 (8)0.0396 (3)
H210.63860.40520.06800.048*
C210.5655 (2)0.45722 (10)0.16001 (10)0.0391 (4)
C220.5086 (2)0.37266 (11)0.17328 (10)0.0420 (4)
H220.51740.32610.13360.050*
C230.4463 (2)0.35426 (11)0.23449 (10)0.0428 (4)
H230.41920.29630.23060.051*
C240.4128 (2)0.40956 (12)0.30745 (10)0.0446 (4)
C250.7041 (2)0.52430 (10)0.06799 (10)0.0381 (4)
C260.7260 (2)0.60907 (11)0.11038 (10)0.0436 (4)
H260.68860.62360.15810.052*
C270.8047 (2)0.67118 (11)0.07996 (11)0.0488 (4)
C280.8582 (2)0.65292 (12)0.00858 (11)0.0491 (4)
H280.91050.6959−0.01080.059*
C290.8309 (2)0.56830 (12)−0.03288 (10)0.0428 (4)
C300.7562 (2)0.50368 (11)−0.00454 (10)0.0407 (4)
H300.74070.4470−0.03350.049*
Cl310.55958 (9)1.27986 (3)0.76423 (5)0.0959 (2)
Cl320.82403 (7)1.05115 (3)0.58042 (4)0.07005 (16)
O310.12442 (17)1.02362 (8)0.74663 (8)0.0571 (3)
O32−0.15047 (18)0.99017 (9)0.78660 (10)0.0684 (4)
H32A−0.05811.00260.77500.103*
O33−0.36446 (17)0.87993 (9)0.75591 (9)0.0645 (4)
N310.25893 (18)0.96191 (9)0.65386 (9)0.0436 (3)
H310.25520.91520.61850.052*
C310.1331 (2)0.96077 (10)0.69387 (10)0.0411 (4)
C320.0088 (2)0.87797 (11)0.67137 (10)0.0433 (4)
H320.03550.83330.63590.052*
C33−0.1363 (2)0.85857 (11)0.69501 (11)0.0450 (4)
H33−0.19290.80160.67430.054*
C34−0.2235 (2)0.91137 (12)0.74824 (11)0.0485 (4)
C350.3974 (2)1.03050 (10)0.66258 (10)0.0412 (4)
C360.4083 (2)1.11348 (11)0.70717 (11)0.0496 (4)
H360.32361.12690.73400.060*
C370.5476 (3)1.17524 (11)0.71059 (12)0.0547 (5)
C380.6779 (2)1.15837 (12)0.67291 (12)0.0549 (5)
H380.77191.20110.67700.066*
C390.6626 (2)1.07548 (11)0.62901 (12)0.0487 (4)
C400.5251 (2)1.01120 (11)0.62243 (11)0.0461 (4)
H400.51740.95590.59180.055*
Cl41−0.02282 (7)0.37735 (4)0.72019 (3)0.06395 (15)
Cl420.24811 (9)0.16293 (3)0.52385 (4)0.07410 (17)
O410.1923 (2)0.57709 (8)0.57929 (9)0.0737 (5)
O420.2233 (2)0.73192 (9)0.59737 (10)0.0750 (5)
H42A0.21700.68150.59570.112*
O430.3060 (2)0.81990 (8)0.53013 (9)0.0711 (4)
N410.24994 (17)0.46304 (8)0.49887 (8)0.0410 (3)
H410.28500.44500.45570.049*
C410.2470 (2)0.54591 (10)0.52001 (10)0.0425 (4)
C420.3126 (2)0.59666 (11)0.46873 (10)0.0432 (4)
H420.34810.56680.42480.052*
C430.3275 (2)0.67973 (11)0.47709 (11)0.0439 (4)
H430.37360.69880.43770.053*
C440.2847 (2)0.74820 (11)0.53737 (11)0.0469 (4)
C450.2013 (2)0.40192 (10)0.54029 (10)0.0385 (4)
C460.1217 (2)0.41867 (11)0.60458 (10)0.0442 (4)
H460.09550.47160.62200.053*
C470.0823 (2)0.35548 (12)0.64202 (10)0.0455 (4)
C480.1202 (2)0.27686 (12)0.61936 (11)0.0501 (4)
H480.09490.23550.64620.060*
C490.1980 (2)0.26185 (11)0.55458 (11)0.0474 (4)
C500.2381 (2)0.32229 (11)0.51464 (10)0.0429 (4)
H500.28920.31000.47100.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl110.0741 (3)0.0627 (3)0.0933 (4)0.0149 (3)0.0646 (3)0.0126 (3)
Cl120.0638 (3)0.0411 (2)0.0622 (3)0.0011 (2)0.0306 (2)−0.0035 (2)
O110.0714 (9)0.0484 (8)0.0902 (10)−0.0030 (7)0.0571 (8)−0.0163 (7)
O120.0658 (9)0.0464 (8)0.0823 (10)0.0011 (6)0.0405 (8)−0.0155 (7)
O130.0817 (10)0.0399 (8)0.0843 (10)−0.0005 (7)0.0403 (8)−0.0067 (7)
N110.0392 (7)0.0373 (7)0.0449 (8)0.0084 (6)0.0224 (6)0.0021 (6)
C110.0439 (9)0.0402 (9)0.0457 (10)0.0085 (7)0.0197 (8)0.0013 (7)
C120.0458 (9)0.0426 (9)0.0522 (10)0.0093 (8)0.0263 (8)−0.0011 (8)
C130.0464 (10)0.0436 (10)0.0564 (11)0.0031 (8)0.0254 (9)0.0015 (8)
C140.0483 (10)0.0400 (10)0.0467 (10)0.0091 (8)0.0138 (8)0.0014 (8)
C150.0374 (8)0.0384 (8)0.0378 (8)0.0094 (7)0.0155 (7)0.0097 (7)
C160.0499 (10)0.0393 (9)0.0482 (10)0.0107 (7)0.0257 (8)0.0055 (7)
C170.0474 (9)0.0476 (10)0.0494 (10)0.0155 (8)0.0301 (8)0.0137 (8)
C180.0420 (9)0.0423 (9)0.0464 (10)0.0060 (7)0.0195 (8)0.0142 (8)
C190.0444 (9)0.0367 (8)0.0371 (9)0.0101 (7)0.0141 (7)0.0073 (7)
C200.0389 (8)0.0412 (9)0.0383 (9)0.0125 (7)0.0176 (7)0.0086 (7)
Cl210.1164 (5)0.0404 (3)0.0771 (4)0.0009 (3)0.0463 (3)0.0053 (2)
Cl220.0648 (3)0.0712 (3)0.0456 (3)0.0192 (2)0.0299 (2)0.0205 (2)
O210.0796 (9)0.0398 (7)0.0569 (8)0.0105 (6)0.0441 (7)0.0048 (6)
O220.0947 (11)0.0524 (8)0.0509 (8)0.0086 (7)0.0460 (8)0.0027 (6)
O230.0785 (9)0.0694 (9)0.0479 (7)0.0176 (7)0.0363 (7)0.0195 (7)
N210.0481 (8)0.0355 (7)0.0384 (7)0.0110 (6)0.0213 (6)0.0062 (6)
C210.0393 (8)0.0412 (9)0.0369 (8)0.0082 (7)0.0161 (7)0.0053 (7)
C220.0486 (9)0.0392 (9)0.0395 (9)0.0103 (7)0.0207 (8)0.0046 (7)
C230.0453 (9)0.0417 (9)0.0434 (9)0.0087 (7)0.0185 (8)0.0096 (7)
C240.0418 (9)0.0541 (11)0.0377 (9)0.0076 (8)0.0163 (7)0.0087 (8)
C250.0348 (8)0.0431 (9)0.0390 (9)0.0095 (7)0.0124 (7)0.0124 (7)
C260.0469 (9)0.0433 (9)0.0414 (9)0.0086 (7)0.0183 (8)0.0079 (7)
C270.0556 (11)0.0399 (9)0.0498 (10)0.0067 (8)0.0178 (9)0.0083 (8)
C280.0523 (10)0.0485 (10)0.0506 (11)0.0068 (8)0.0193 (9)0.0186 (8)
C290.0386 (9)0.0576 (11)0.0378 (9)0.0142 (8)0.0152 (7)0.0160 (8)
C300.0422 (9)0.0440 (9)0.0377 (9)0.0131 (7)0.0137 (7)0.0087 (7)
Cl310.1081 (5)0.0399 (3)0.1330 (6)−0.0019 (3)0.0686 (4)−0.0086 (3)
Cl320.0627 (3)0.0547 (3)0.1095 (5)0.0189 (2)0.0499 (3)0.0271 (3)
O310.0623 (8)0.0436 (7)0.0635 (8)0.0072 (6)0.0343 (7)−0.0014 (6)
O320.0652 (9)0.0518 (8)0.0915 (11)0.0138 (7)0.0504 (8)0.0001 (7)
O330.0522 (8)0.0674 (9)0.0782 (10)0.0122 (7)0.0375 (7)0.0113 (7)
N310.0513 (8)0.0350 (7)0.0469 (8)0.0084 (6)0.0234 (7)0.0070 (6)
C310.0454 (9)0.0399 (9)0.0425 (9)0.0141 (7)0.0181 (8)0.0101 (7)
C320.0480 (9)0.0381 (9)0.0457 (9)0.0127 (7)0.0201 (8)0.0058 (7)
C330.0466 (9)0.0407 (9)0.0484 (10)0.0093 (7)0.0191 (8)0.0076 (8)
C340.0488 (10)0.0524 (11)0.0527 (11)0.0176 (8)0.0249 (9)0.0153 (9)
C350.0481 (9)0.0390 (9)0.0409 (9)0.0102 (7)0.0163 (7)0.0143 (7)
C360.0581 (11)0.0413 (9)0.0537 (11)0.0109 (8)0.0260 (9)0.0106 (8)
C370.0675 (12)0.0364 (9)0.0604 (12)0.0077 (8)0.0254 (10)0.0075 (8)
C380.0542 (11)0.0417 (10)0.0703 (13)0.0037 (8)0.0220 (10)0.0172 (9)
C390.0502 (10)0.0453 (10)0.0608 (11)0.0153 (8)0.0240 (9)0.0217 (9)
C400.0529 (10)0.0376 (9)0.0540 (11)0.0131 (8)0.0221 (8)0.0143 (8)
Cl410.0705 (3)0.0751 (3)0.0505 (3)0.0069 (3)0.0327 (2)0.0171 (2)
Cl420.1134 (5)0.0526 (3)0.0719 (4)0.0381 (3)0.0316 (3)0.0251 (3)
O410.1289 (13)0.0460 (8)0.0721 (9)0.0321 (8)0.0727 (10)0.0180 (7)
O420.1258 (13)0.0440 (8)0.0763 (10)0.0302 (9)0.0658 (10)0.0158 (7)
O430.1044 (12)0.0400 (8)0.0795 (10)0.0188 (7)0.0456 (9)0.0158 (7)
N410.0503 (8)0.0369 (7)0.0386 (7)0.0099 (6)0.0229 (6)0.0058 (6)
C410.0498 (10)0.0388 (9)0.0419 (9)0.0124 (7)0.0206 (8)0.0070 (7)
C420.0509 (10)0.0430 (9)0.0402 (9)0.0142 (8)0.0226 (8)0.0077 (7)
C430.0477 (9)0.0433 (9)0.0453 (10)0.0106 (7)0.0200 (8)0.0135 (8)
C440.0528 (10)0.0375 (10)0.0507 (10)0.0097 (8)0.0177 (8)0.0083 (8)
C450.0377 (8)0.0378 (8)0.0381 (9)0.0043 (7)0.0111 (7)0.0077 (7)
C460.0455 (9)0.0420 (9)0.0443 (9)0.0063 (7)0.0175 (8)0.0070 (8)
C470.0408 (9)0.0547 (11)0.0373 (9)0.0012 (8)0.0125 (7)0.0094 (8)
C480.0530 (10)0.0519 (11)0.0455 (10)0.0040 (8)0.0106 (8)0.0194 (8)
C490.0526 (10)0.0426 (9)0.0461 (10)0.0119 (8)0.0090 (8)0.0110 (8)
C500.0453 (9)0.0436 (9)0.0392 (9)0.0098 (7)0.0135 (7)0.0072 (7)

Geometric parameters (Å, °)

Cl11—C171.7383 (15)Cl31—C371.7410 (18)
Cl12—C191.7347 (16)Cl32—C391.7412 (18)
O11—C111.2370 (19)O31—C311.2383 (19)
O12—C141.297 (2)O32—C341.299 (2)
O12—H12A0.8200O32—H32A0.8200
O13—C141.209 (2)O33—C341.222 (2)
N11—C111.344 (2)N31—C311.341 (2)
N11—C151.413 (2)N31—C351.417 (2)
N11—H110.8600N31—H310.8600
C11—C121.469 (2)C31—C321.481 (2)
C12—C131.329 (2)C32—C331.335 (2)
C12—H120.9300C32—H320.9300
C13—C141.487 (2)C33—C341.483 (2)
C13—H130.9300C33—H330.9300
C15—C161.390 (2)C35—C361.390 (2)
C15—C201.395 (2)C35—C401.395 (2)
C16—C171.380 (2)C36—C371.375 (3)
C16—H160.9300C36—H360.9300
C17—C181.372 (2)C37—C381.380 (3)
C18—C191.382 (2)C38—C391.378 (3)
C18—H180.9300C38—H380.9300
C19—C201.374 (2)C39—C401.376 (2)
C20—H200.9300C40—H400.9300
Cl21—C271.7462 (18)Cl41—C471.7382 (17)
Cl22—C291.7400 (16)Cl42—C491.7383 (18)
O21—C211.2399 (19)O41—C411.236 (2)
O22—C241.298 (2)O42—C441.301 (2)
O22—H22A0.8200O42—H42A0.8200
O23—C241.222 (2)O43—C441.208 (2)
N21—C211.341 (2)N41—C411.339 (2)
N21—C251.415 (2)N41—C451.417 (2)
N21—H210.8600N41—H410.8600
C21—C221.482 (2)C41—C421.470 (2)
C22—C231.336 (2)C42—C431.329 (2)
C22—H220.9300C42—H420.9300
C23—C241.482 (2)C43—C441.490 (2)
C23—H230.9300C43—H430.9300
C25—C261.388 (2)C45—C501.389 (2)
C25—C301.392 (2)C45—C461.391 (2)
C26—C271.380 (2)C46—C471.379 (2)
C26—H260.9300C46—H460.9300
C27—C281.377 (2)C47—C481.371 (3)
C28—C291.376 (2)C48—C491.386 (3)
C28—H280.9300C48—H480.9300
C29—C301.376 (2)C49—C501.374 (2)
C30—H300.9300C50—H500.9300
C14—O12—H12A109.5C34—O32—H32A109.5
C11—N11—C15127.15 (13)C31—N31—C35128.06 (14)
C11—N11—H11116.4C31—N31—H31116.0
C15—N11—H11116.4C35—N31—H31116.0
O11—C11—N11122.01 (15)O31—C31—N31122.38 (16)
O11—C11—C12122.74 (15)O31—C31—C32122.95 (15)
N11—C11—C12115.25 (13)N31—C31—C32114.65 (14)
C13—C12—C11128.48 (15)C33—C32—C31128.94 (15)
C13—C12—H12115.8C33—C32—H32115.5
C11—C12—H12115.8C31—C32—H32115.5
C12—C13—C14132.18 (16)C32—C33—C34131.68 (17)
C12—C13—H13113.9C32—C33—H33114.2
C14—C13—H13113.9C34—C33—H33114.2
O13—C14—O12119.44 (16)O33—C34—O32120.35 (16)
O13—C14—C13119.61 (16)O33—C34—C33119.38 (17)
O12—C14—C13120.92 (15)O32—C34—C33120.27 (15)
C16—C15—C20120.07 (15)C36—C35—C40120.31 (16)
C16—C15—N11122.84 (14)C36—C35—N31123.30 (15)
C20—C15—N11117.07 (13)C40—C35—N31116.38 (15)
C17—C16—C15118.37 (15)C37—C36—C35118.29 (16)
C17—C16—H16120.8C37—C36—H36120.9
C15—C16—H16120.8C35—C36—H36120.9
C18—C17—C16123.10 (15)C36—C37—C38123.09 (17)
C18—C17—Cl11118.80 (13)C36—C37—Cl31118.59 (14)
C16—C17—Cl11118.10 (13)C38—C37—Cl31118.31 (14)
C17—C18—C19117.05 (15)C39—C38—C37117.04 (17)
C17—C18—H18121.5C39—C38—H38121.5
C19—C18—H18121.5C37—C38—H38121.5
C20—C19—C18122.50 (15)C40—C39—C38122.49 (16)
C20—C19—Cl12119.90 (12)C40—C39—Cl32118.83 (14)
C18—C19—Cl12117.58 (12)C38—C39—Cl32118.68 (14)
C19—C20—C15118.89 (14)C39—C40—C35118.75 (16)
C19—C20—H20120.6C39—C40—H40120.6
C15—C20—H20120.6C35—C40—H40120.6
C24—O22—H22A109.5C44—O42—H42A109.5
C21—N21—C25128.20 (14)C41—N41—C45126.76 (13)
C21—N21—H21115.9C41—N41—H41116.6
C25—N21—H21115.9C45—N41—H41116.6
O21—C21—N21122.61 (15)O41—C41—N41121.40 (16)
O21—C21—C22122.90 (14)O41—C41—C42122.65 (15)
N21—C21—C22114.48 (13)N41—C41—C42115.95 (13)
C23—C22—C21128.81 (15)C43—C42—C41128.27 (15)
C23—C22—H22115.6C43—C42—H42115.9
C21—C22—H22115.6C41—C42—H42115.9
C22—C23—C24131.60 (16)C42—C43—C44132.34 (16)
C22—C23—H23114.2C42—C43—H43113.8
C24—C23—H23114.2C44—C43—H43113.8
O23—C24—O22120.20 (16)O43—C44—O42119.42 (16)
O23—C24—C23119.55 (17)O43—C44—C43119.52 (17)
O22—C24—C23120.24 (15)O42—C44—C43121.06 (16)
C26—C25—C30120.11 (15)C50—C45—C46119.75 (15)
C26—C25—N21123.43 (14)C50—C45—N41117.07 (14)
C30—C25—N21116.42 (14)C46—C45—N41123.17 (15)
C27—C26—C25118.29 (15)C47—C46—C45118.83 (16)
C27—C26—H26120.9C47—C46—H46120.6
C25—C26—H26120.9C45—C46—H46120.6
C28—C27—C26123.00 (16)C48—C47—C46122.88 (16)
C28—C27—Cl21118.79 (14)C48—C47—Cl41119.41 (14)
C26—C27—Cl21118.18 (13)C46—C47—Cl41117.70 (14)
C29—C28—C27117.17 (16)C47—C48—C49116.89 (16)
C29—C28—H28121.4C47—C48—H48121.6
C27—C28—H28121.4C49—C48—H48121.6
C30—C29—C28122.29 (15)C50—C49—C48122.50 (16)
C30—C29—Cl22118.87 (13)C50—C49—Cl42119.14 (14)
C28—C29—Cl22118.84 (13)C48—C49—Cl42118.36 (14)
C29—C30—C25119.10 (15)C49—C50—C45119.13 (15)
C29—C30—H30120.4C49—C50—H50120.4
C25—C30—H30120.4C45—C50—H50120.4

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N11—H11···O33i0.862.072.9254 (17)172
N21—H21···O130.862.052.8748 (18)161
N31—H31···O430.862.092.9244 (19)165
N41—H41···O230.862.072.9186 (18)168
O12—H12A···O110.821.652.4680 (18)175
O22—H22A···O210.821.642.4613 (17)177
O32—H32A···O310.821.662.4772 (17)177
O42—H42A···O410.821.652.4684 (18)172

Symmetry codes: (i) x+1, y−1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2519).

References

  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fourmigué, M. (2009). Curr. Opin. Solid State Mater. Sci.13, 36–45.
  • Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o873. [PMC free article] [PubMed]
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2945. [PMC free article] [PubMed]
  • Kubicki, M. (2004). J. Mol. Struct.698, 67–73.
  • Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Abingdon, England.
  • Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o1296–o1297.
  • Shakuntala, K., Gowda, B. T., Tokarčík, M. & Kožíšek, J. (2009). Acta Cryst. E65, o3119. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography