PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o29–o30.
Published online 2009 December 4. doi:  10.1107/S1600536809051368
PMCID: PMC2980099

4-Amino-3-(1-naphthyl­oxymeth­yl)-1H-1,2,4-triazole-5(4H)-thione

Abstract

In the title compound, C13H12N4OS, the dihedral angle between the triazole and naphthalene ring systems is 67.42 (5)°. In the crystal, adjacent mol­ecules are linked via two pairs of inter­molecular N—H(...)S inter­actions, forming R 2 2(8) and R 2 2(10) ring motifs. Weak C—H(...)S inter­actions generate infinite chains along [001] and the structure is further consolidated by C–H(...)π bonds and aromatic π(...)π stacking inter­actions [distance between the centroids of the triazole rings = 3.2479 (7) Å].

Related literature

For general background to and the pharmacological activity of triazole derivatives, see: Amir et al. (2008 [triangle]); Sztanke et al. (2008 [triangle]); Kuş et al. (2008 [triangle]); Padmavathi et al. (2008 [triangle]); Isloor et al. (2009 [triangle]). For a related structure, see: Fun et al. (2009 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For the preparation, see: Suresh (1992 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00o29-scheme1.jpg

Experimental

Crystal data

  • C13H12N4OS
  • M r = 272.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00o29-efi1.jpg
  • a = 7.0023 (1) Å
  • b = 24.0785 (4) Å
  • c = 8.0915 (1) Å
  • β = 113.404 (1)°
  • V = 1252.02 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 100 K
  • 0.38 × 0.23 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.908, T max = 0.983
  • 24326 measured reflections
  • 5826 independent reflections
  • 4223 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.122
  • S = 1.03
  • 5826 reflections
  • 220 parameters
  • All H-atom parameters refined
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051368/hb5255sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051368/hb5255Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ thanks USM for a Research Fellowship. AMI is grateful to the Head of the Department of Chemistry and Director, NITK, Surathkal, India, for providing research facilities.

supplementary crystallographic information

Comment

1,2,4-triazole and its derivatives were reported to exhibit various pharmacological activities such as antimicrobial, analgesic, anti-inflammatory, anticancer and antioxidant properties (Amir et al., 2008; Sztanke et al.., 2008; Kuş et al., 2008; Padmavathi et al., 2008). A few derivatives of triazoles have exhibited antimicrobial activity (Isloor et al., 2009). Some of the present day drugs such as ribavirin (antiviral agent), rizatriptan (anti migraine agent), alprazolam (anxiolytic agent), fluconazole and itraconazole (antifungal agents) are the best examples for potent molecules possessing the triazole nucleus. The amino and mercapto groups of 1,2,4-triazoles serve as readily accessible nucleophilic centers of the preparation of N-bridged heterocycles. Keeping in view of the biological importance, we have synthesized the title compound to study its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The triazole ring (C1/N1/N2/C2/N3) make an dihedral angle of 67.42 (5)° with naphthalene ring (C4-C13). Short intermolecular distances between the centroids of the triazole rings [3.2479 (7) Å] indicate the existence of π···π interactions. The molecular structure is linked via pairs of intermolecular N1—H1N1···S1 and N4—H1N4···S1 interactions, forming R22 (8) and R22 (10) ring motifs (Bernstein et al., 1995), respectively. Bond lengths and angles are within normal ranges, and comparable to a closely related structure (Fun et al., 2009). In the crystal packing (Fig. 2), the molecules are linked into infinite one-dimensional chains along the direction [0 0 1] via adjacent ring motifs and C12–H12A···S1 interactions (Fig. 2). The crystal strcuture is further consolidated by C–H···π (Table 1) interactions.

Experimental

2-(1-Naphthyloxy)acetohydrazide (21.6 g, 1.00 mmol) was added slowly to a solution of potassium hydroxide (8.4 g, 1.50 mmol) in ethanol (150 ml). The resulting mixture was stirred well until a clear solution was obtained. Carbon disulphide (11.4 g, 1.50 mmol) was added drop-wise and the contents were stirred vigorously. Further stirring was continued for 24 h. The resulting mixture was diluted with ether (100 ml) and the precipitate formed was collected by filtration, washed with dry ether and dried at 65 /%c under vacuum. It was used for the next step without any purification.

A mixture of the above synthesized potassium dithiocarbazinate (16.5 g, 0.50 mmol), hydrazine hydrate (99 %, 1.00 mmol) and water (2 ml) was heated gently to boil for 30 minutes. Heating was continued until the evacuation of hydrogen sulphide ceased. The reaction mixture was cooled to room temperature, diluted with water (100 ml) and acidified with HCl. The solid mass that separated was collected by filtration, washed with water and dried. Recrystallization was achieved from ethanol. The yield was 9.25 g (68 %), m. p. 470-471 K (Suresh, 1992).

Refinement

All H atoms were located in a difference Fourier map and refined freely.

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The crystal structure of (I) viewed along the b axis. Intermolecular interactions are shown in dashed lines.

Crystal data

C13H12N4OSF(000) = 568
Mr = 272.33Dx = 1.445 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5692 reflections
a = 7.0023 (1) Åθ = 2.9–35.1°
b = 24.0785 (4) ŵ = 0.26 mm1
c = 8.0915 (1) ÅT = 100 K
β = 113.404 (1)°Plate, yellow
V = 1252.02 (3) Å30.38 × 0.23 × 0.07 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer5826 independent reflections
Radiation source: fine-focus sealed tube4223 reflections with I > 2σ(I)
graphiteRint = 0.045
[var phi] and ω scansθmax = 35.8°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −11→11
Tmin = 0.908, Tmax = 0.983k = −39→38
24326 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122All H-atom parameters refined
S = 1.03w = 1/[σ2(Fo2) + (0.0592P)2 + 0.214P] where P = (Fo2 + 2Fc2)/3
5826 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.00629 (5)0.044619 (13)0.25791 (4)0.01810 (8)
O10.52129 (13)−0.11362 (4)0.14188 (11)0.01666 (16)
N10.22651 (15)−0.04341 (4)0.46060 (13)0.01481 (17)
N20.38889 (16)−0.07854 (4)0.47914 (13)0.01636 (18)
N30.33179 (15)−0.01814 (4)0.25913 (12)0.01411 (17)
N40.37675 (18)0.01243 (5)0.13172 (14)0.0193 (2)
C10.18602 (17)−0.00623 (5)0.32721 (14)0.01419 (19)
C20.44981 (17)−0.06189 (5)0.35421 (15)0.01418 (19)
C30.61978 (18)−0.08762 (5)0.31417 (15)0.0162 (2)
C40.65096 (17)−0.13872 (5)0.07391 (14)0.01338 (19)
C50.86351 (18)−0.14187 (5)0.16169 (16)0.0165 (2)
C60.98108 (19)−0.16981 (5)0.07908 (17)0.0195 (2)
C70.88492 (19)−0.19351 (5)−0.08729 (17)0.0187 (2)
C80.66644 (18)−0.19040 (5)−0.18076 (15)0.01484 (19)
C90.5615 (2)−0.21540 (5)−0.35253 (16)0.0185 (2)
C100.3499 (2)−0.21323 (5)−0.43817 (16)0.0199 (2)
C110.2304 (2)−0.18580 (5)−0.35758 (16)0.0178 (2)
C120.32576 (18)−0.16061 (5)−0.19258 (15)0.01452 (19)
C130.54499 (17)−0.16261 (4)−0.10061 (14)0.01255 (18)
H3A0.693 (2)−0.1148 (6)0.405 (2)0.013 (3)*
H3B0.715 (2)−0.0602 (6)0.310 (2)0.015 (4)*
H5A0.940 (3)−0.1254 (7)0.279 (2)0.022 (4)*
H6A1.131 (3)−0.1723 (7)0.134 (2)0.029 (4)*
H7A0.962 (3)−0.2110 (7)−0.143 (2)0.026 (4)*
H9A0.647 (3)−0.2335 (7)−0.404 (2)0.031 (5)*
H10A0.288 (3)−0.2318 (7)−0.550 (2)0.028 (4)*
H11A0.080 (3)−0.1865 (7)−0.414 (2)0.023 (4)*
H12A0.240 (3)−0.1418 (7)−0.142 (2)0.022 (4)*
H1N10.162 (3)−0.0455 (7)0.536 (3)0.031 (5)*
H1N40.284 (3)0.0023 (8)0.022 (3)0.035 (5)*
H2N40.354 (3)0.0475 (8)0.153 (3)0.035 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01841 (14)0.02112 (15)0.01629 (13)0.00540 (10)0.00852 (11)0.00193 (10)
O10.0150 (4)0.0207 (4)0.0148 (3)0.0010 (3)0.0065 (3)−0.0072 (3)
N10.0161 (4)0.0159 (4)0.0151 (4)0.0006 (3)0.0090 (4)−0.0001 (3)
N20.0187 (4)0.0159 (4)0.0170 (4)0.0015 (4)0.0098 (4)−0.0006 (3)
N30.0157 (4)0.0156 (4)0.0129 (4)0.0004 (3)0.0077 (3)−0.0001 (3)
N40.0248 (5)0.0216 (5)0.0153 (4)0.0013 (4)0.0122 (4)0.0031 (4)
C10.0144 (5)0.0157 (5)0.0133 (4)−0.0014 (4)0.0064 (4)−0.0022 (3)
C20.0151 (5)0.0143 (5)0.0138 (4)−0.0005 (4)0.0064 (4)−0.0029 (3)
C30.0157 (5)0.0191 (5)0.0135 (4)0.0012 (4)0.0056 (4)−0.0044 (4)
C40.0141 (4)0.0139 (5)0.0140 (4)0.0013 (3)0.0076 (4)−0.0015 (3)
C50.0148 (5)0.0188 (5)0.0156 (5)0.0000 (4)0.0057 (4)−0.0023 (4)
C60.0145 (5)0.0233 (6)0.0218 (5)0.0027 (4)0.0085 (4)−0.0006 (4)
C70.0187 (5)0.0193 (5)0.0218 (5)0.0035 (4)0.0118 (5)−0.0007 (4)
C80.0187 (5)0.0130 (5)0.0159 (4)0.0008 (4)0.0100 (4)0.0001 (4)
C90.0259 (6)0.0157 (5)0.0172 (5)−0.0006 (4)0.0120 (5)−0.0034 (4)
C100.0261 (6)0.0174 (5)0.0153 (5)−0.0032 (4)0.0072 (5)−0.0039 (4)
C110.0185 (5)0.0177 (5)0.0159 (5)−0.0026 (4)0.0054 (4)0.0000 (4)
C120.0156 (5)0.0137 (5)0.0148 (4)−0.0003 (4)0.0066 (4)−0.0003 (4)
C130.0145 (5)0.0111 (4)0.0129 (4)0.0004 (3)0.0065 (4)−0.0003 (3)

Geometric parameters (Å, °)

S1—C11.6842 (12)C5—C61.4192 (16)
O1—C41.3743 (12)C5—H5A0.971 (17)
O1—C31.4308 (13)C6—C71.3678 (18)
N1—C11.3431 (14)C6—H6A0.964 (18)
N1—N21.3768 (13)C7—C81.4138 (17)
N1—H1N10.894 (19)C7—H7A0.931 (17)
N2—C21.3066 (14)C8—C91.4223 (16)
N3—C11.3691 (13)C8—C131.4246 (15)
N3—C21.3710 (15)C9—C101.3648 (19)
N3—N41.4005 (13)C9—H9A0.964 (17)
N4—H1N40.90 (2)C10—C111.4123 (17)
N4—H2N40.888 (19)C10—H10A0.947 (18)
C2—C31.4872 (15)C11—C121.3740 (16)
C3—H3A0.966 (15)C11—H11A0.967 (17)
C3—H3B0.948 (15)C12—C131.4160 (16)
C4—C51.3732 (16)C12—H12A0.960 (16)
C4—C131.4294 (15)
C4—O1—C3116.29 (9)C4—C5—H5A123.0 (10)
C1—N1—N2113.50 (9)C6—C5—H5A117.3 (10)
C1—N1—H1N1125.7 (12)C7—C6—C5120.69 (11)
N2—N1—H1N1120.7 (12)C7—C6—H6A116.6 (10)
C2—N2—N1103.67 (9)C5—C6—H6A122.6 (10)
C1—N3—C2108.34 (9)C6—C7—C8120.62 (10)
C1—N3—N4127.42 (10)C6—C7—H7A121.0 (11)
C2—N3—N4123.73 (9)C8—C7—H7A118.4 (11)
N3—N4—H1N4107.3 (12)C7—C8—C9121.97 (10)
N3—N4—H2N4104.3 (12)C7—C8—C13119.74 (10)
H1N4—N4—H2N4109.4 (18)C9—C8—C13118.27 (10)
N1—C1—N3103.33 (9)C10—C9—C8121.01 (10)
N1—C1—S1130.05 (8)C10—C9—H9A122.4 (11)
N3—C1—S1126.60 (9)C8—C9—H9A116.6 (11)
N2—C2—N3111.15 (10)C9—C10—C11120.41 (11)
N2—C2—C3125.18 (11)C9—C10—H10A117.4 (10)
N3—C2—C3123.64 (10)C11—C10—H10A122.2 (10)
O1—C3—C2106.07 (9)C12—C11—C10120.45 (11)
O1—C3—H3A110.6 (9)C12—C11—H11A119.1 (10)
C2—C3—H3A109.9 (8)C10—C11—H11A120.4 (10)
O1—C3—H3B110.0 (9)C11—C12—C13120.17 (10)
C2—C3—H3B110.6 (9)C11—C12—H12A118.5 (10)
H3A—C3—H3B109.6 (13)C13—C12—H12A121.4 (10)
C5—C4—O1124.75 (10)C12—C13—C8119.68 (10)
C5—C4—C13121.29 (9)C12—C13—C4122.31 (9)
O1—C4—C13113.96 (9)C8—C13—C4117.98 (10)
C4—C5—C6119.66 (11)
C1—N1—N2—C20.50 (13)C4—C5—C6—C70.18 (19)
N2—N1—C1—N3−0.61 (12)C5—C6—C7—C80.32 (19)
N2—N1—C1—S1−179.18 (9)C6—C7—C8—C9−178.92 (12)
C2—N3—C1—N10.48 (12)C6—C7—C8—C13−0.36 (18)
N4—N3—C1—N1−171.51 (10)C7—C8—C9—C10178.15 (11)
C2—N3—C1—S1179.11 (9)C13—C8—C9—C10−0.43 (17)
N4—N3—C1—S17.12 (17)C8—C9—C10—C110.18 (18)
N1—N2—C2—N3−0.17 (12)C9—C10—C11—C120.48 (18)
N1—N2—C2—C3−178.26 (11)C10—C11—C12—C13−0.87 (17)
C1—N3—C2—N2−0.20 (13)C11—C12—C13—C80.61 (16)
N4—N3—C2—N2172.15 (10)C11—C12—C13—C4−177.82 (11)
C1—N3—C2—C3177.92 (10)C7—C8—C13—C12−178.58 (11)
N4—N3—C2—C3−9.73 (17)C9—C8—C13—C120.03 (16)
C4—O1—C3—C2177.76 (9)C7—C8—C13—C4−0.08 (16)
N2—C2—C3—O1110.95 (12)C9—C8—C13—C4178.53 (10)
N3—C2—C3—O1−66.91 (14)C5—C4—C13—C12179.03 (11)
C3—O1—C4—C52.21 (16)O1—C4—C13—C12−0.50 (15)
C3—O1—C4—C13−178.28 (9)C5—C4—C13—C80.57 (16)
O1—C4—C5—C6178.85 (11)O1—C4—C13—C8−178.96 (9)
C13—C4—C5—C6−0.63 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···S1i0.89 (2)2.39 (2)3.2857 (11)176.2 (14)
N4—H1N4···S1ii0.90 (2)2.62 (2)3.5075 (12)167.3 (19)
C12—H12A···S1ii0.96 (2)2.836 (18)3.5368 (13)130.3 (12)
C9—H9A···Cg1iii0.964 (17)2.794 (18)3.6345 (14)146.8 (14)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x, −y, −z; (iii) x, −y−3/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5255).

References

  • Amir, M., Kumar, H. & Javed, S. A. (2008). Eur. J. Med. Chem.43, 2056–2066. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Fun, H.-K., Liew, W.-C., Vijesh, A. M., Padaki, M. & Isloor, A. M. (2009). Acta Cryst. E65, o1910–o1911. [PMC free article] [PubMed]
  • Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem.44, 3784–3787. [PubMed]
  • Kuş, C., Ayhan Kılcıgil, G., Zbey, O. S., Kaynak, F. B., Kaya, M., Oban, C. T. & Can-Eke, B. (2008). Bioorg. Med. Chem.16, 4294–4303. [PubMed]
  • Padmavathi, V., Thriveni, P., Reddy, G. S. & Deepti, D. (2008). Eur. J. Med. Chem.43, 917–924. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Suresh K. V. (1992). M Phil dissertation, Mangalore University, India.
  • Sztanke, K., Tuzimski, T., Rzymowska, J., Pasternak, K. & Kandefer-Szerszeń, M. (2008). Eur. J. Med. Chem.43, 404–419. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography