PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m65.
Published online 2009 December 16. doi:  10.1107/S1600536809053100
PMCID: PMC2980094

Diiodido(1,10-phenanthroline-κ2 N,N′)platinum(II)

Abstract

In the title complex, [PtI2(C12H8N2)], the Pt2+ ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the chelating 1,10-phenanthroline ligand and two iodide ions. The nearly planar mol­ecules, with a maximum deviation of 0.170 (3) Å from the least-squares plane, are stacked in columns along the c axis with a Pt(...)Pt distance of 4.8510 (6) Å. In the column, π–π inter­actions between adjacent six-membered rings are present, the shortest centroid–centroid distance being 3.703 (5) Å.

Related literature

For the syntheses of [PtX 2(phen)] (phen = 1,10-phenanthroline; X = Cl, Br or I), see: Hodges & Rund (1975 [triangle]). For the crystal structure of yellow [PtCl2(phen)] which is isotypic to the title complex, see: Grzesiak & Matzger (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00m65-scheme1.jpg

Experimental

Crystal data

  • [PtI2(C12H8N2)]
  • M r = 629.09
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00m65-efi1.jpg
  • a = 10.3284 (9) Å
  • b = 17.9462 (16) Å
  • c = 7.3833 (7) Å
  • β = 108.569 (2)°
  • V = 1297.3 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 15.55 mm−1
  • T = 200 K
  • 0.32 × 0.13 × 0.08 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.422, T max = 1.000
  • 7331 measured reflections
  • 2284 independent reflections
  • 2110 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.084
  • S = 1.06
  • 2284 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 3.05 e Å−3
  • Δρmin = −1.40 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809053100/ng2700sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053100/ng2700Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0094056).

supplementary crystallographic information

Comment

The title complex, [PtI2(phen)] (where phen is 1,10-phenanthroline, C12H8N2), is isomorphous with the yellow form of [PtCl2(phen)], whereas the orange form of [PtCl2(phen)] crystallized in the orthorhombic space group Pca21 (Grzesiak & Matzger, 2007).

In the title complex, the Pt2+ ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the chelating 1,10-phenanthroline ligand and two iodide ions (Fig. 1). The main contribution to the distortion is the tight N1—Pt1—N2 chelate angle [80.6 (2)°], which results in non-linear trans arrangement [<N1—Pt1—I1 = 175.72 (17)° and <N2—Pt1—I2 = 175.02 (17)°]. The Pt1—N and Pt1—I bond lengths are almost equal, respectively [Pt1—N: 2.060 (7) and 2.039 (6) Å; Pt1—I 2.5847 (6) and 2.5774 (7) Å] (Table 1). The complex displays numerous intermolecular π-π interactions between adjacent six-membered rings, with a shortest centroid-centroid distance of 3.703 (5) Å and the dihedral angle between the ring planes is 3.4 (4)°. The nearly planar [PtI2(phen)] molecules, with a largest deviation of 0.170 (3) Å from the least-squares plane, stack in columns along the c axis with a Pt···Pt distance of 4.8510 (6) Å (Fig. 2).

Experimental

To a solution of K2PtCl4 (0.2011 g, 0.484 mmol) in H2O (20 ml) were added KI (1.6010 g, 9.644 mmol) and 1,10-phenanthroline (0.0967 g, 0.537 mmol), and refluxed for 3 h. The precipitate obtained was separated by filtration, washed with water and acetone, and dried at 100 °C, to give a dark yellow powder (0.2732 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an N,N-dimethylformamide solution at 50 °C.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The maximum and minimum residual electron density peaks of 3.05 and -1.40 e Å-3, respectively, were located 0.97 and 0.92 Å from the Pt Atom.

Figures

Fig. 1.
The structure of the title complex, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
Fig. 2.
Crystal packing of the title complex.

Crystal data

[PtI2(C12H8N2)]F(000) = 1112
Mr = 629.09Dx = 3.221 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5463 reflections
a = 10.3284 (9) Åθ = 2.3–28.2°
b = 17.9462 (16) ŵ = 15.55 mm1
c = 7.3833 (7) ÅT = 200 K
β = 108.569 (2)°Needle, yellow
V = 1297.3 (2) Å30.32 × 0.13 × 0.08 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer2284 independent reflections
Radiation source: fine-focus sealed tube2110 reflections with I > 2σ(I)
graphiteRint = 0.033
[var phi] and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −11→12
Tmin = 0.422, Tmax = 1.000k = −21→21
7331 measured reflectionsl = −8→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0524P)2 + 0.9657P] where P = (Fo2 + 2Fc2)/3
2284 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 3.05 e Å3
0 restraintsΔρmin = −1.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pt10.71220 (3)0.337678 (16)0.39502 (4)0.02011 (13)
I10.74244 (6)0.48072 (3)0.41617 (8)0.03146 (17)
I20.45788 (6)0.35783 (3)0.20604 (9)0.03744 (18)
N10.7037 (6)0.2230 (4)0.3858 (8)0.0245 (15)
N20.9082 (6)0.3142 (4)0.5563 (9)0.0219 (13)
C10.6012 (9)0.1789 (5)0.2965 (12)0.034 (2)
H10.51670.20050.22370.041*
C20.6130 (9)0.1009 (5)0.3056 (13)0.035 (2)
H20.53760.07090.23670.042*
C30.7305 (10)0.0681 (6)0.4114 (11)0.036 (2)
H30.73750.01530.41950.044*
C40.8426 (9)0.1132 (4)0.5097 (12)0.0291 (19)
C50.9726 (10)0.0861 (5)0.6267 (13)0.034 (2)
H50.98620.03380.64190.041*
C61.0755 (9)0.1317 (5)0.7155 (13)0.0317 (19)
H61.16020.11140.79210.038*
C71.0598 (8)0.2110 (4)0.6964 (11)0.0248 (17)
C81.1647 (8)0.2622 (5)0.7825 (11)0.0311 (19)
H81.25190.24530.86000.037*
C91.1388 (9)0.3359 (4)0.7527 (12)0.0300 (19)
H91.20910.37080.81010.036*
C101.0137 (8)0.3614 (5)0.6417 (11)0.0261 (17)
H100.99990.41350.62360.031*
C110.9351 (8)0.2394 (4)0.5838 (10)0.0208 (16)
C120.8236 (8)0.1915 (4)0.4917 (11)0.0233 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pt10.0168 (2)0.0209 (2)0.0209 (2)−0.00133 (10)0.00349 (14)−0.00034 (10)
I10.0309 (3)0.0217 (3)0.0393 (3)0.0010 (2)0.0077 (3)0.0001 (2)
I20.0184 (3)0.0439 (4)0.0433 (4)0.0001 (2)0.0004 (2)0.0026 (3)
N10.024 (4)0.028 (4)0.023 (3)−0.004 (3)0.010 (3)−0.002 (3)
N20.018 (4)0.025 (3)0.022 (3)0.001 (3)0.006 (3)0.001 (3)
C10.031 (5)0.040 (5)0.032 (5)−0.019 (4)0.010 (4)−0.012 (4)
C20.030 (5)0.034 (5)0.041 (5)−0.015 (4)0.011 (4)−0.007 (4)
C30.059 (7)0.026 (5)0.031 (5)−0.006 (4)0.025 (5)−0.005 (3)
C40.043 (5)0.021 (4)0.031 (4)−0.005 (4)0.023 (4)0.001 (3)
C50.048 (6)0.024 (5)0.038 (5)0.009 (4)0.023 (5)0.002 (4)
C60.028 (5)0.032 (5)0.038 (5)0.003 (4)0.014 (4)0.004 (4)
C70.019 (4)0.030 (4)0.027 (4)0.007 (3)0.009 (3)0.003 (3)
C80.020 (4)0.046 (5)0.025 (4)0.010 (4)0.005 (3)0.006 (4)
C90.026 (5)0.033 (5)0.025 (4)−0.005 (3)0.000 (4)−0.001 (3)
C100.017 (4)0.023 (4)0.032 (4)−0.008 (3)−0.001 (3)−0.003 (3)
C110.024 (4)0.019 (4)0.021 (4)−0.003 (3)0.010 (3)0.000 (3)
C120.033 (5)0.021 (4)0.022 (4)−0.001 (3)0.016 (4)0.003 (3)

Geometric parameters (Å, °)

Pt1—N22.039 (6)C4—C121.419 (11)
Pt1—N12.060 (7)C4—C51.431 (13)
Pt1—I22.5774 (7)C5—C61.337 (12)
Pt1—I12.5847 (6)C5—H50.9500
N1—C11.319 (10)C6—C71.434 (11)
N1—C121.360 (10)C6—H60.9500
N2—C101.365 (10)C7—C111.389 (11)
N2—C111.374 (10)C7—C81.407 (12)
C1—C21.405 (13)C8—C91.354 (12)
C1—H10.9500C8—H80.9500
C2—C31.351 (13)C9—C101.369 (12)
C2—H20.9500C9—H90.9500
C3—C41.410 (12)C10—H100.9500
C3—H30.9500C11—C121.423 (11)
N2—Pt1—N180.6 (2)C6—C5—C4122.3 (8)
N2—Pt1—I2175.02 (17)C6—C5—H5118.9
N1—Pt1—I295.57 (17)C4—C5—H5118.9
N2—Pt1—I195.23 (18)C5—C6—C7120.8 (8)
N1—Pt1—I1175.72 (17)C5—C6—H6119.6
I2—Pt1—I188.63 (2)C7—C6—H6119.6
C1—N1—C12118.5 (8)C11—C7—C8117.7 (7)
C1—N1—Pt1129.5 (6)C11—C7—C6118.5 (7)
C12—N1—Pt1112.1 (5)C8—C7—C6123.8 (7)
C10—N2—C11116.4 (7)C9—C8—C7118.7 (8)
C10—N2—Pt1129.8 (5)C9—C8—H8120.6
C11—N2—Pt1113.8 (5)C7—C8—H8120.6
N1—C1—C2122.1 (9)C8—C9—C10121.5 (8)
N1—C1—H1119.0C8—C9—H9119.2
C2—C1—H1119.0C10—C9—H9119.2
C3—C2—C1120.6 (8)N2—C10—C9122.1 (8)
C3—C2—H2119.7N2—C10—H10118.9
C1—C2—H2119.7C9—C10—H10118.9
C2—C3—C4119.2 (9)N2—C11—C7123.5 (7)
C2—C3—H3120.4N2—C11—C12115.2 (7)
C4—C3—H3120.4C7—C11—C12121.3 (7)
C3—C4—C12117.0 (8)N1—C12—C4122.6 (7)
C3—C4—C5125.0 (8)N1—C12—C11118.2 (7)
C12—C4—C5117.9 (7)C4—C12—C11119.1 (7)
N2—Pt1—N1—C1−178.5 (7)Pt1—N2—C10—C9177.2 (6)
I2—Pt1—N1—C14.8 (7)C8—C9—C10—N20.4 (13)
N2—Pt1—N1—C122.5 (5)C10—N2—C11—C72.1 (10)
I2—Pt1—N1—C12−174.3 (4)Pt1—N2—C11—C7−176.9 (6)
N1—Pt1—N2—C10179.0 (7)C10—N2—C11—C12−179.5 (6)
I1—Pt1—N2—C100.1 (7)Pt1—N2—C11—C121.6 (8)
N1—Pt1—N2—C11−2.2 (5)C8—C7—C11—N2−1.6 (11)
I1—Pt1—N2—C11178.8 (4)C6—C7—C11—N2179.6 (7)
C12—N1—C1—C2−0.9 (11)C8—C7—C11—C12−179.9 (7)
Pt1—N1—C1—C2−179.9 (6)C6—C7—C11—C121.2 (10)
N1—C1—C2—C31.6 (12)C1—N1—C12—C40.0 (10)
C1—C2—C3—C4−1.4 (12)Pt1—N1—C12—C4179.2 (5)
C2—C3—C4—C120.5 (11)C1—N1—C12—C11178.4 (7)
C2—C3—C4—C5179.9 (8)Pt1—N1—C12—C11−2.4 (8)
C3—C4—C5—C6179.5 (7)C3—C4—C12—N10.2 (10)
C12—C4—C5—C6−1.1 (12)C5—C4—C12—N1−179.3 (7)
C4—C5—C6—C7−0.2 (12)C3—C4—C12—C11−178.2 (7)
C5—C6—C7—C110.1 (11)C5—C4—C12—C112.4 (10)
C5—C6—C7—C8−178.6 (8)N2—C11—C12—N10.6 (10)
C11—C7—C8—C90.4 (11)C7—C11—C12—N1179.1 (6)
C6—C7—C8—C9179.2 (7)N2—C11—C12—C4179.0 (6)
C7—C8—C9—C100.1 (12)C7—C11—C12—C4−2.5 (10)
C11—N2—C10—C9−1.5 (11)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2700).

References

  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Grzesiak, A. L. & Matzger, A. J. (2007). Inorg. Chem.46, 453–457. [PubMed]
  • Hodges, K. D. & Rund, J. V. (1975). Inorg. Chem.14, 525–528.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography