PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o95.
Published online 2009 December 9. doi:  10.1107/S160053680905212X
PMCID: PMC2980093

(E)-N′-[(2-Hydroxy-1-naphthyl)methyl­ene]benzohydrazide monohydrate

Abstract

In the title compound, C18H14N2O2·H2O, the dihedral angle between the benzene ring and the naphthalene system is 5.18 (10)°. Intra­molecular N—H(...)O hydrogen bonds influence the molecular conformation. In the crystal, inter­molecular N—H(...)O and O—H(...)O hydrogen bonds are observed as well as π–π inter­actions between the phenyl ring and the substituted ring of the naphthalene [centroid–centroid distance = 3.676 (11) Å].

Related literature

For background to Schiff bases in coordination chemistry, see: Chakraborty & Patel (1996 [triangle]); Jeewoth et al. (1999 [triangle]). For their biological activity, see: Das et al. (1999 [triangle]). For related structures, see: Fun et al.(2008 [triangle]); Nie (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00o95-scheme1.jpg

Experimental

Crystal data

  • C18H14N2O2·H2O
  • M r = 308.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00o95-efi3.jpg
  • a = 16.346 (6) Å
  • b = 7.192 (3) Å
  • c = 13.880 (5) Å
  • β = 111.949 (4)°
  • V = 1513.5 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.50 × 0.48 × 0.43 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.955, T max = 0.961
  • 7296 measured reflections
  • 2669 independent reflections
  • 1648 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.148
  • S = 1.07
  • 2669 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL .

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680905212X/bq2175sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905212X/bq2175Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Foundation of Dongchang College, Liaocheng University (grant No. LG0801).

supplementary crystallographic information

Comment

Schiff bases are popular ligands in coordination chemistry due to their ease of synthesis and their ability to be readily modified both electronically and sterically. (Chakraborty et al., 1996; Jeewoth et al., 1999). Meanwhile, aromatic aldehyde Schiff bases have also attracted much attention due to their diverse biological activities, such as antimicrobial antibacterial, antiviral, anticancer activities etc (Das et al., 1999).

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in reported the compound (Nie et al., 2008; Fun et al., 2008).

In the crystal structure, the C=N bond length in the molecule is 1.282 (3) °, showing the double-bond character. Meanwhile, the dihedral angle between the benzene ring (C3—C8) and the naphthalene plane in the Schiff base molecule is 5.18 (10) °, indicating that the two planes are almost coplanar.

Moreover, there exist one H2O molecule in the crystal unit, the crystal structure of the title compound consists of one two-dimension supramolecular structure was built from the connections of N—H···O, O—H..O hydrogen bonds and (Table 1.) two π···π stacking interactions between the rings (C2-C7) and (C9-C14) and their symmetry related counterparts (Symmetry code=-x+1, -y, -z+1 and centroid-to centroid distance = 3.676 (11) Å).

Experimental

2-Hydroxy-1-naphthaldehyde (3 mmol), benzohydrazide (3 mmol) and 10 ml methanol were mixed in 50 ml flask. After stirring 30 min at 373 K, the resulting mixture was recrystalized from methanol, affording the title compound as a colorless crystalline solid. Elemental analysis: calculated for C18H16N2O3: C 70.12, H 5.23, N 9.09%; found: C 70.18, H 5.15, N 9.14%.

Refinement

All H atoms, except the H atoms of H2O, were placed in geometrically idealized positions (O—H = 0.82, N—H 0.86 and C—H 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5 Ueq(C, N, O) (C,N, O). Meanwhile, The H atoms of free water molecule were placed in geometrically idealized positions (O—H = 0.85 Å) and treated as riding on O atom, with Uiso(H) = 1.2Ueq(O) (O).

Figures

Fig. 1.
A view of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids, showing the intramolecular H-bond with dashed line.
Fig. 2.
A packing of (I) viewed down b-axis showing H-bond interactions with dashed lines. Symmetry codes: (i) -x, -y, -z+1; (ii) x, -y+1/2, z+1/2..
Fig. 3.
The π···π interactions of (I) with dashed lines. Symmetry codes: (A) -x+1, -y, -z+1.

Crystal data

C18H14N2O2·H2OF(000) = 648
Mr = 308.33Dx = 1.353 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2137 reflections
a = 16.346 (6) Åθ = 2.7–26.8°
b = 7.192 (3) ŵ = 0.09 mm1
c = 13.880 (5) ÅT = 298 K
β = 111.949 (4)°Block, colourless
V = 1513.5 (10) Å30.50 × 0.48 × 0.43 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer2669 independent reflections
Radiation source: fine-focus sealed tube1648 reflections with I > 2σ(I)
graphiteRint = 0.027
phi and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→19
Tmin = 0.955, Tmax = 0.961k = −8→8
7296 measured reflectionsl = −16→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0594P)2 + 0.5603P] where P = (Fo2 + 2Fc2)/3
2669 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.03568 (12)0.2307 (3)0.50343 (16)0.0462 (5)
H10.03340.23630.56430.055*
N20.11241 (12)0.1782 (3)0.49103 (16)0.0482 (5)
O1−0.03364 (11)0.2630 (3)0.33109 (14)0.0679 (6)
O20.21163 (12)0.1127 (3)0.38534 (13)0.0711 (6)
H20.16750.14960.39410.107*
O30.06076 (12)0.1282 (3)0.71458 (14)0.0790 (6)
H3C0.05240.01280.70150.095*
H3D0.03120.16100.75070.095*
C1−0.03525 (15)0.2726 (3)0.41878 (19)0.0437 (6)
C2−0.11669 (14)0.3308 (3)0.43458 (18)0.0407 (6)
C3−0.12564 (16)0.3358 (4)0.5298 (2)0.0513 (6)
H3−0.07840.30250.58970.062*
C4−0.20439 (17)0.3902 (4)0.5361 (2)0.0602 (7)
H4−0.21000.39330.60030.072*
C5−0.27411 (17)0.4393 (4)0.4486 (2)0.0594 (7)
H5−0.32710.47550.45340.071*
C6−0.26626 (17)0.4356 (4)0.3545 (2)0.0615 (7)
H6−0.31400.46910.29510.074*
C7−0.18785 (16)0.3825 (3)0.34665 (19)0.0531 (6)
H7−0.18270.38140.28210.064*
C80.17844 (15)0.1408 (3)0.5745 (2)0.0466 (6)
H80.17270.15290.63840.056*
C90.26175 (14)0.0802 (3)0.57090 (18)0.0412 (6)
C100.27378 (16)0.0654 (3)0.47759 (19)0.0496 (6)
C110.35283 (17)−0.0052 (4)0.4732 (2)0.0592 (7)
H110.3601−0.01170.41000.071*
C120.41789 (17)−0.0633 (4)0.5610 (2)0.0559 (7)
H120.4690−0.11310.55680.067*
C130.41064 (15)−0.0507 (3)0.65878 (19)0.0475 (6)
C140.33263 (14)0.0262 (3)0.66492 (18)0.0422 (6)
C150.32900 (18)0.0419 (4)0.7644 (2)0.0587 (7)
H150.27970.09530.77150.070*
C160.3967 (2)−0.0201 (5)0.8507 (2)0.0741 (9)
H160.3927−0.00770.91550.089*
C170.47164 (19)−0.1017 (4)0.8435 (2)0.0724 (8)
H170.5164−0.14680.90260.087*
C180.47854 (16)−0.1145 (4)0.7497 (2)0.0603 (7)
H180.5290−0.16650.74500.072*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0417 (11)0.0484 (12)0.0551 (12)0.0012 (9)0.0258 (10)−0.0028 (10)
N20.0418 (12)0.0468 (12)0.0622 (14)0.0010 (9)0.0266 (10)−0.0019 (10)
O10.0670 (12)0.0933 (15)0.0546 (11)0.0107 (10)0.0355 (10)0.0084 (10)
O20.0629 (12)0.0993 (16)0.0516 (11)0.0146 (11)0.0218 (9)0.0020 (11)
O30.0876 (15)0.1016 (16)0.0615 (12)0.0114 (12)0.0435 (11)−0.0008 (12)
C10.0469 (14)0.0405 (13)0.0506 (15)−0.0026 (11)0.0261 (12)0.0028 (11)
C20.0388 (13)0.0358 (12)0.0495 (14)−0.0043 (10)0.0189 (11)−0.0012 (10)
C30.0439 (14)0.0600 (16)0.0530 (15)0.0013 (12)0.0215 (12)0.0023 (13)
C40.0588 (17)0.0674 (18)0.0662 (17)0.0024 (14)0.0371 (14)−0.0011 (15)
C50.0441 (15)0.0564 (17)0.083 (2)0.0031 (12)0.0301 (15)−0.0041 (15)
C60.0449 (15)0.0650 (18)0.0677 (19)0.0042 (13)0.0131 (13)0.0003 (15)
C70.0535 (15)0.0539 (16)0.0523 (15)−0.0019 (12)0.0203 (12)−0.0010 (12)
C80.0460 (14)0.0426 (14)0.0575 (15)−0.0036 (11)0.0266 (12)−0.0042 (12)
C90.0388 (13)0.0376 (13)0.0516 (14)−0.0026 (10)0.0219 (11)−0.0042 (11)
C100.0451 (14)0.0538 (15)0.0523 (16)−0.0010 (11)0.0209 (12)−0.0023 (12)
C110.0546 (16)0.0729 (18)0.0605 (17)0.0019 (14)0.0334 (14)−0.0056 (14)
C120.0446 (15)0.0598 (17)0.0730 (19)0.0016 (12)0.0329 (14)−0.0046 (14)
C130.0403 (13)0.0417 (13)0.0618 (16)−0.0052 (11)0.0206 (12)−0.0011 (12)
C140.0409 (13)0.0392 (13)0.0513 (15)−0.0075 (10)0.0227 (11)−0.0040 (11)
C150.0541 (16)0.0702 (19)0.0572 (17)−0.0040 (13)0.0271 (14)−0.0011 (14)
C160.074 (2)0.097 (2)0.0544 (18)−0.0059 (18)0.0268 (16)0.0034 (16)
C170.0600 (19)0.081 (2)0.0658 (19)−0.0025 (16)0.0115 (15)0.0121 (17)
C180.0438 (15)0.0566 (17)0.0778 (19)−0.0005 (13)0.0197 (14)0.0037 (15)

Geometric parameters (Å, °)

N1—C11.341 (3)C7—H70.9300
N1—N21.381 (2)C8—C91.448 (3)
N1—H10.8600C8—H80.9300
N2—C81.282 (3)C9—C101.385 (3)
O1—C11.229 (3)C9—C141.437 (3)
O2—C101.347 (3)C10—C111.410 (3)
O2—H20.8200C11—C121.349 (3)
O3—H3C0.8500C11—H110.9301
O3—H3D0.8501C12—C131.409 (3)
C1—C21.488 (3)C12—H120.9300
C2—C31.383 (3)C13—C181.410 (3)
C2—C71.385 (3)C13—C141.421 (3)
C3—C41.379 (3)C14—C151.408 (3)
C3—H30.9300C15—C161.367 (4)
C4—C51.365 (4)C15—H150.9300
C4—H40.9300C16—C171.395 (4)
C5—C61.361 (4)C16—H160.9300
C5—H50.9301C17—C181.352 (4)
C6—C71.380 (3)C17—H170.9300
C6—H60.9301C18—H180.9300
C1—N1—N2118.7 (2)C10—C9—C14118.7 (2)
C1—N1—H1120.6C10—C9—C8121.3 (2)
N2—N1—H1120.6C14—C9—C8120.0 (2)
C8—N2—N1116.2 (2)O2—C10—C9123.3 (2)
C10—O2—H2109.5O2—C10—C11115.3 (2)
H3C—O3—H3D108.4C9—C10—C11121.4 (2)
O1—C1—N1121.6 (2)C12—C11—C10119.9 (2)
O1—C1—C2120.9 (2)C12—C11—H11120.1
N1—C1—C2117.5 (2)C10—C11—H11120.1
C3—C2—C7118.7 (2)C11—C12—C13121.9 (2)
C3—C2—C1124.6 (2)C11—C12—H12119.1
C7—C2—C1116.6 (2)C13—C12—H12119.1
C4—C3—C2120.2 (2)C12—C13—C18121.3 (2)
C4—C3—H3119.9C12—C13—C14118.9 (2)
C2—C3—H3119.9C18—C13—C14119.8 (2)
C5—C4—C3120.4 (3)C15—C14—C13117.2 (2)
C5—C4—H4119.8C15—C14—C9123.6 (2)
C3—C4—H4119.8C13—C14—C9119.2 (2)
C6—C5—C4120.1 (3)C16—C15—C14121.1 (3)
C6—C5—H5119.9C16—C15—H15119.5
C4—C5—H5119.9C14—C15—H15119.5
C5—C6—C7120.3 (2)C15—C16—C17121.3 (3)
C5—C6—H6119.8C15—C16—H16119.4
C7—C6—H6119.8C17—C16—H16119.4
C6—C7—C2120.2 (2)C18—C17—C16119.3 (3)
C6—C7—H7119.9C18—C17—H17120.3
C2—C7—H7119.9C16—C17—H17120.3
N2—C8—C9121.1 (2)C17—C18—C13121.2 (3)
N2—C8—H8119.4C17—C18—H18119.4
C9—C8—H8119.4C13—C18—H18119.4

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O30.862.112.899 (3)152
O2—H2···N20.821.892.604 (3)145
O3—H3C···O1i0.852.032.882 (3)179
O3—H3D···O1ii0.851.882.734 (3)179

Symmetry codes: (i) −x, −y, −z+1; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2175).

References

  • Chakraborty, J. & Patel, R. N. (1996). J. Indian Chem. Soc.73, 191–195.
  • Das, A., Trousdale, M. D., Ren, S. & Lien, E. J. (1999). Antiviral Res.44, 201–208. [PubMed]
  • Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595. [PMC free article] [PubMed]
  • Jeewoth, T., Bhowon, M. G. & Wah, H. L. K. (1999). Transition Met. Chem.24, 445–448.
  • Nie, Y. (2008). Acta Cryst. E64, o471. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography