PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o204.
Published online 2009 December 19. doi:  10.1107/S1600536809053744
PMCID: PMC2980091

Diphenyl (benzyl­amido)phosphate

Abstract

The title compound, C19H18NO3P, was prepared by the reaction of diphenyl phospho­rochloridate and benzyl­amine. In the crystal structure, mol­ecules are linked via N—H(...)O=P hydrogen bonds into extended chains parallel to the c axis.

Related literature

For related structures, see: Bao & Wulff (1993 [triangle]); Gholivand et al. (2005 [triangle]); Karolak-Wojciechowska et al. (1979 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o204-scheme1.jpg

Experimental

Crystal data

  • C19H18NO3P
  • M r = 339.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o204-efi1.jpg
  • a = 10.0226 (5) Å
  • b = 19.2450 (8) Å
  • c = 10.2273 (5) Å
  • β = 115.375 (6)°
  • V = 1782.38 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.17 mm−1
  • T = 295 K
  • 0.43 × 0.28 × 0.17 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire3 (Gemini Mo) detector
  • Absorption correction: multi-scan CrysAlis PRO (Oxford Diffraction, 2009 [triangle]) T min = 0.977, T max = 1.000
  • 8248 measured reflections
  • 4105 independent reflections
  • 2568 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.102
  • S = 0.91
  • 4105 reflections
  • 218 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809053744/lh2963sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053744/lh2963Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

supplementary crystallographic information

Comment

In previous work, the synthesis and X-ray structures of some amidophosphoric acid ester compounds, such as [(C6H5)(CH3)CH—NH]P(O)(p—OC6H4CH3)2 (Gholivand et al., 2005) and P(O)[OC6H5]2[N(CH2C6H5)(C(S)NHCH2C6H5)] (Karolak-Wojciechowska et al., 1979) have been investigated. We report here on the synthesis and crystal structure of a new amido bis(phosphoric acid ester) compound, [C6H5—CH2—NH]P(O)[O—C6H5]2. The title compound was synthesized from the reaction of diphenyl phosphorochloridate with an excess amount of benzylamine. The P—O3 bond length of 1.4567 (10) Å and the P—N bond length of 1.5952 (14) Å are standard for this type of compound [for example for two crystallographically different [(C6H5)(CH3)CH—NH]P(O)(p—OC6H4CH3)2 molecules (Gholivand et al., 2005), P═O = 1.462 (3) Å and 1.469 (3) Å and P—N = 1.610 (5) Å and 1.614 (5) Å and for the heterocyclic phosphorus compound obtained from sequential treatment of (+)2,2'-diphenyl-3,3'-biphenanthrol with phosphorus oxychloride and (S)-(-)-α-methylbenzylamine (Bao & Wulff, 1993) P═O = 1.456 (6) Å, P—N = 1.612 (7)]. In the title copmound, the P—O1 and P—O2 bond lengths are slightly different (1.5844 (12) Å and 1.5880 (12) Å) and the P atom has a distorted tetrahedral configuration (Fig. 1); the bond angles around the P atom are in the range of 98.80 (6)° [for the O1—P—O2 angle] to 114.84 (7)° [for the O3—P—O1 angle]. Molecules are linked via N—H···O═P hydrogen bonds (N···O3 = 2.8241 (15) Å) into extended chains parallel to the c axis (Fig. 2).

Experimental

To a solution of diphenyl phosphorochloridate (0.572 g, 2.13 mmol) in chloroform (15 ml), a solution of benzylamine (0.456 g, 4.26 mmol) in chloroform (30 ml) was added at 273K. After 4 h of stirring, the solvent was evaporated in vacuum. The solid was washed with distilled water. Single crystals were obtained from a solution of the title compound in chloroform and n-heptane (4:1) after slow evaporation at room temperature. IR (KBr, cm-1): 3165 s, 2891 m, 2680 w, 2221 w, 1952 w, 1592 m, 1475 s, 1242 vs, 1198 vs, 1116 s, 1004 m, 931 vs, 759 s, 687 s.

Refinement

H atoms were placed in the calculated positions and included in the refinement in a riding-model approximation with C-H = 0.93-0.97Å, N-H = 0.86Å and Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.
The molecular structure of the title compound, indicating the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Part of the crystal structure with hydrogen bonds shown as dashed lines.

Crystal data

C19H18NO3PF(000) = 712
Mr = 339.31Dx = 1.264 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3418 reflections
a = 10.0226 (5) Åθ = 3.2–29.1°
b = 19.2450 (8) ŵ = 0.17 mm1
c = 10.2273 (5) ÅT = 295 K
β = 115.375 (6)°Prism, colorless
V = 1782.38 (17) Å30.43 × 0.28 × 0.17 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire3 (Gemini Mo) detector4105 independent reflections
Radiation source: Enhance (Mo) X-ray Source2568 reflections with I > 2σ(I)
graphiteRint = 0.019
Detector resolution: 16.3280 pixels mm-1θmax = 29.2°, θmin = 3.2°
ω scansh = −7→13
Absorption correction: multi-scan CrysAlis (Oxford Diffraction, 2009)k = −17→24
Tmin = 0.977, Tmax = 1.000l = −13→13
8248 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.102w = 1/[σ2(Fo2) + (0.0573P)2] where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
4105 reflectionsΔρmax = 0.19 e Å3
218 parametersΔρmin = −0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (10)

Special details

Experimental. #__ type_ start__ end____ width___ exp.time_ 1 omega -51.00 47.00 1.0000 19.0400 omega____ theta____ kappa____ phi______ frames - 21.0423 - 37.0000 300.0000 98#__ type_ start__ end____ width___ exp.time_ 2 omega 5.00 91.00 1.0000 19.0400 omega____ theta____ kappa____ phi______ frames - 21.0423 77.0000 150.0000 86#__ type_ start__ end____ width___ exp.time_ 3 omega -6.00 41.00 1.0000 19.0400 omega____ theta____ kappa____ phi______ frames - 21.0423 - 77.0000 240.0000 47
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
P0.97981 (4)0.22655 (2)0.06013 (4)0.04171 (14)
O10.87224 (12)0.16886 (6)−0.04116 (11)0.0509 (3)
O21.13289 (12)0.18955 (6)0.09457 (11)0.0514 (3)
O30.95622 (13)0.24405 (6)0.18721 (10)0.0563 (3)
N0.97260 (16)0.29192 (7)−0.03860 (13)0.0491 (4)
H0.96600.2836−0.12380.059*
C171.2659 (3)0.00509 (17)0.3197 (5)0.1137 (12)
H171.2997−0.03630.37010.136*
C20.84557 (18)0.40475 (9)−0.10133 (16)0.0458 (4)
C10.97616 (19)0.36437 (9)0.00303 (17)0.0507 (4)
H1A1.06610.38560.00840.061*
H1B0.97820.36670.09860.061*
C80.71826 (18)0.17787 (9)−0.09973 (17)0.0490 (4)
C141.17229 (17)0.12655 (9)0.17145 (18)0.0495 (4)
C130.6460 (2)0.20013 (13)−0.2392 (2)0.0841 (7)
H130.69730.2108−0.29390.101*
C30.7036 (2)0.38616 (11)−0.1264 (2)0.0617 (5)
H30.68850.3474−0.08020.074*
C70.8641 (2)0.46219 (10)−0.17277 (18)0.0576 (5)
H70.95850.4753−0.15890.069*
C90.6453 (2)0.16092 (11)−0.0180 (2)0.0638 (5)
H90.69720.14560.07680.077*
C151.2344 (2)0.12743 (12)0.3197 (2)0.0668 (5)
H151.24510.16900.36970.080*
C50.6047 (2)0.48142 (13)−0.2871 (2)0.0779 (6)
H50.52390.5074−0.34870.094*
C191.1552 (2)0.06622 (12)0.0974 (2)0.0756 (6)
H191.11220.0662−0.00320.091*
C60.7436 (2)0.50035 (11)−0.2647 (2)0.0735 (6)
H60.75760.5392−0.31160.088*
C100.4937 (2)0.16685 (13)−0.0781 (3)0.0870 (7)
H100.44230.1553−0.02400.104*
C181.2022 (3)0.00495 (13)0.1733 (5)0.1065 (10)
H181.1901−0.03670.12340.128*
C40.5843 (2)0.42419 (14)−0.2187 (2)0.0765 (6)
H40.48930.4109−0.23470.092*
C161.2806 (3)0.06559 (18)0.3931 (3)0.0959 (9)
H161.32210.06520.49370.115*
C110.4196 (3)0.18955 (14)−0.2160 (4)0.1061 (10)
H110.31730.1937−0.25620.127*
C120.4943 (3)0.20642 (15)−0.2968 (3)0.1170 (11)
H120.44230.2222−0.39120.140*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
P0.0509 (2)0.0414 (3)0.0336 (2)0.0017 (2)0.01886 (17)0.0016 (2)
O10.0523 (7)0.0403 (7)0.0545 (6)0.0012 (5)0.0175 (5)−0.0030 (5)
O20.0500 (6)0.0496 (8)0.0554 (6)0.0035 (6)0.0234 (5)0.0076 (6)
O30.0751 (8)0.0621 (9)0.0367 (6)0.0050 (7)0.0287 (5)0.0045 (6)
N0.0775 (9)0.0403 (9)0.0341 (6)0.0033 (7)0.0283 (6)−0.0005 (6)
C170.0716 (17)0.080 (2)0.198 (4)0.0297 (16)0.067 (2)0.068 (3)
C20.0540 (9)0.0409 (10)0.0455 (8)−0.0013 (8)0.0242 (7)−0.0057 (8)
C10.0614 (10)0.0417 (11)0.0466 (9)−0.0041 (9)0.0210 (8)−0.0025 (8)
C80.0525 (10)0.0325 (10)0.0494 (9)−0.0007 (8)0.0097 (8)−0.0013 (8)
C140.0388 (8)0.0452 (11)0.0628 (11)0.0030 (8)0.0202 (8)0.0040 (9)
C130.0884 (16)0.0824 (17)0.0522 (11)−0.0214 (13)0.0022 (10)0.0109 (11)
C30.0655 (12)0.0597 (13)0.0704 (11)−0.0050 (10)0.0390 (10)0.0001 (10)
C70.0605 (11)0.0512 (12)0.0630 (11)−0.0032 (10)0.0282 (9)0.0037 (10)
C90.0561 (11)0.0623 (14)0.0643 (10)−0.0019 (10)0.0177 (9)−0.0007 (10)
C150.0664 (11)0.0729 (15)0.0637 (11)0.0193 (11)0.0305 (9)0.0141 (11)
C50.0683 (14)0.0810 (18)0.0751 (14)0.0245 (13)0.0216 (11)0.0064 (13)
C190.0555 (11)0.0584 (15)0.0963 (15)0.0033 (11)0.0167 (10)−0.0175 (13)
C60.0884 (16)0.0574 (14)0.0726 (13)0.0109 (12)0.0325 (12)0.0164 (11)
C100.0579 (13)0.0773 (18)0.1166 (18)−0.0056 (12)0.0286 (13)−0.0169 (15)
C180.0680 (15)0.0452 (16)0.190 (3)0.0061 (13)0.0401 (19)−0.005 (2)
C40.0524 (11)0.0902 (18)0.0894 (14)0.0068 (12)0.0326 (11)−0.0006 (14)
C160.0857 (16)0.116 (2)0.0997 (17)0.0436 (17)0.0529 (14)0.0563 (19)
C110.0530 (13)0.0567 (16)0.153 (3)−0.0022 (12)−0.0092 (16)0.0056 (17)
C120.093 (2)0.090 (2)0.0937 (18)−0.0231 (16)−0.0313 (15)0.0330 (15)

Geometric parameters (Å, °)

P—O31.4567 (10)C3—C41.375 (3)
P—O11.5844 (12)C3—H30.9300
P—O21.5880 (12)C7—C61.381 (3)
P—N1.5952 (14)C7—H70.9300
O1—C81.4065 (19)C9—C101.379 (3)
O2—C141.406 (2)C9—H90.9300
N—C11.454 (2)C15—C161.377 (3)
N—H0.8600C15—H150.9300
C17—C181.353 (4)C5—C61.360 (3)
C17—C161.359 (4)C5—C41.366 (3)
C17—H170.9300C5—H50.9300
C2—C31.381 (2)C19—C181.379 (4)
C2—C71.381 (2)C19—H190.9300
C2—C11.503 (2)C6—H60.9300
C1—H1A0.9700C10—C111.355 (4)
C1—H1B0.9700C10—H100.9300
C8—C131.363 (2)C18—H180.9300
C8—C91.365 (3)C4—H40.9300
C14—C191.356 (3)C16—H160.9300
C14—C151.370 (2)C11—C121.370 (4)
C13—C121.381 (3)C11—H110.9300
C13—H130.9300C12—H120.9300
O3—P—O1114.84 (7)C2—C7—H7119.7
O3—P—O2114.62 (6)C6—C7—H7119.7
O1—P—O298.80 (6)C8—C9—C10119.0 (2)
O3—P—N113.69 (7)C8—C9—H9120.5
O1—P—N107.77 (6)C10—C9—H9120.5
O2—P—N105.75 (7)C14—C15—C16118.7 (2)
C8—O1—P120.47 (10)C14—C15—H15120.7
C14—O2—P121.58 (10)C16—C15—H15120.7
C1—N—P125.61 (10)C6—C5—C4119.8 (2)
C1—N—H117.2C6—C5—H5120.1
P—N—H117.2C4—C5—H5120.1
C18—C17—C16120.1 (3)C14—C19—C18119.2 (2)
C18—C17—H17120.0C14—C19—H19120.4
C16—C17—H17120.0C18—C19—H19120.4
C3—C2—C7118.08 (17)C5—C6—C7120.3 (2)
C3—C2—C1120.83 (16)C5—C6—H6119.8
C7—C2—C1121.08 (16)C7—C6—H6119.8
N—C1—C2112.54 (13)C11—C10—C9119.9 (2)
N—C1—H1A109.1C11—C10—H10120.1
C2—C1—H1A109.1C9—C10—H10120.1
N—C1—H1B109.1C17—C18—C19120.4 (3)
C2—C1—H1B109.1C17—C18—H18119.8
H1A—C1—H1B107.8C19—C18—H18119.8
C13—C8—C9122.16 (18)C5—C4—C3120.2 (2)
C13—C8—O1118.58 (17)C5—C4—H4119.9
C9—C8—O1119.17 (15)C3—C4—H4119.9
C19—C14—C15121.14 (19)C17—C16—C15120.5 (3)
C19—C14—O2119.20 (16)C17—C16—H16119.7
C15—C14—O2119.57 (17)C15—C16—H16119.7
C8—C13—C12117.9 (2)C10—C11—C12120.5 (2)
C8—C13—H13121.0C10—C11—H11119.8
C12—C13—H13121.0C12—C11—H11119.8
C4—C3—C2120.91 (19)C11—C12—C13120.5 (2)
C4—C3—H3119.5C11—C12—H12119.7
C2—C3—H3119.5C13—C12—H12119.7
C2—C7—C6120.63 (18)
O3—P—O1—C856.68 (13)C3—C2—C7—C61.0 (3)
O2—P—O1—C8179.11 (11)C1—C2—C7—C6−177.78 (16)
N—P—O1—C8−71.14 (13)C13—C8—C9—C10−0.4 (3)
O3—P—O2—C1458.59 (14)O1—C8—C9—C10−177.10 (18)
O1—P—O2—C14−63.99 (12)C19—C14—C15—C160.5 (3)
N—P—O2—C14−175.37 (11)O2—C14—C15—C16−176.02 (16)
O3—P—N—C113.52 (17)C15—C14—C19—C18−0.5 (3)
O1—P—N—C1142.00 (14)O2—C14—C19—C18176.05 (17)
O2—P—N—C1−113.09 (14)C4—C5—C6—C7−0.3 (3)
P—N—C1—C2−124.33 (14)C2—C7—C6—C5−0.6 (3)
C3—C2—C1—N60.3 (2)C8—C9—C10—C11−0.3 (4)
C7—C2—C1—N−120.96 (17)C16—C17—C18—C191.7 (4)
P—O1—C8—C1399.80 (18)C14—C19—C18—C17−0.6 (3)
P—O1—C8—C9−83.34 (19)C6—C5—C4—C30.7 (3)
P—O2—C14—C1999.71 (17)C2—C3—C4—C5−0.2 (3)
P—O2—C14—C15−83.73 (17)C18—C17—C16—C15−1.7 (4)
C9—C8—C13—C121.0 (3)C14—C15—C16—C170.6 (3)
O1—C8—C13—C12177.8 (2)C9—C10—C11—C120.3 (4)
C7—C2—C3—C4−0.7 (3)C10—C11—C12—C130.4 (4)
C1—C2—C3—C4178.17 (17)C8—C13—C12—C11−1.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N—H···O3i0.861.972.8241 (15)175

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2963).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Bao, J. & Wulff, W. D. (1993). J. Am. Chem. Soc.115, 3814–3815.
  • Gholivand, K., Shariatinia, Z. & Pourayoubi, M. (2005). Z. Naturforsch. Teil B, 60, 67–74.
  • Karolak-Wojciechowska, J., Wieczorek, M., Mikołajczyk, M., Kiełbasiński, P., Struchkov, Yu. T. & Antipin, M. Yu. (1979). Acta Cryst. B35, 877–881.
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography