PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o53–o54.
Published online 2009 December 4. doi:  10.1107/S1600536809051344
PMCID: PMC2980090

2-Phenoxy­acetohydrazide

Abstract

In the title compound, C8H10N2O2, the acetohydrazide group is almost planar, with an r.m.s. deviation of 0.028 Å. In the crystal, the mol­ecules are linked by inter­molecular C—H(...)O, N—H(...)O and N—H(...)N hydrogen bonds into infinite sheets lying parallel to (001). The acetohydrazide O atom accepts two N—H(...)O links and one C—H(...)O link.

Related literature

For general background to and biological properties of hydrazine derivatives, see: Rando et al. (2008 [triangle]); Kumar et al. (2009 [triangle]); Kamal et al. (2007 [triangle]); Masunari & Tavares (2007 [triangle]); Rando et al. (2002 [triangle]). For a related structure, see: Fun et al. (2009 [triangle]). For the preparation, see: Holla & Udupa (1992 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00o53-scheme1.jpg

Experimental

Crystal data

  • C8H10N2O2
  • M r = 166.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00o53-efi1.jpg
  • a = 6.3397 (8) Å
  • b = 4.0590 (6) Å
  • c = 15.948 (2) Å
  • β = 99.218 (10)°
  • V = 405.09 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.63 × 0.16 × 0.08 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.940, T max = 0.992
  • 3771 measured reflections
  • 1063 independent reflections
  • 916 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.124
  • S = 1.07
  • 1063 reflections
  • 121 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051344/hb5256sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051344/hb5256Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ thanks USM for a Research Fellowship. AMI is grateful to the Director, NITK-Surathkal, India, for providing the research facilities, and to the Head of the Department of Chemistry & Dean R&D, NITK Surathkal, for their encouragement.

supplementary crystallographic information

Comment

Hydrazine derivatives have been reported to possess several biological properties. 5-nitro-2-heterocyclic benzylidine hydrazides were found to possess antileishmanial activities (Rando et al., 2008). Many substituted benzoic acid furan-2-yl-methylene hydrazides showed potent antimicrobial properties (Kumar et al., 2009). Hydrazine derivatives were also associated with remarkable anticancer (Kamal et al., 2007), antibacterial (Masunari & Tavares, 2007) and tuberculostatic (Rando et al., 2002) activities.

The molecular structure is shown in Fig. 1. The acetohydrazide group (C7/C8/N1/N2/O2) is almost planar, with an r.m.s. deviation of 0.028 Å. Bond lengths and angles are within normal ranges, and comparable to a closely related structure (Fun et al., 2009). In the crystal packing (Fig. 2), the molecules are linked via intermolecular C1—H1A···O2, N2—H1N2···O2 and N2—H2N2···O2 trifurcated acceptor bonds, together with N1—H1N1···N2 hydrogen bonds, into infinite two-dimensional networks parallel to plane (0 0 1).

Experimental

Phenol (11 ml, 1.20 mmol), ethyl chloroacetate (12.8 ml, 1.20 mmol) and potassium carbonate (20.75 g, 1.50 mmol) were refluxed in acetone (100 ml) at 80 °C for 18 h. The reaction mixture was then filtered, distilled to remove the acetone and poured into ice cold water with vigorous stirring. The ester, phenoxy ethyl acetate was extracted using ether. The solution was distilled to remove ether. Phenoxy ethyl acetate (8.2 ml, 0.50 mmol) was heated at 100 °C for 10h in absolute alcohol medium (40 ml) with hydrazine hydrate (2.5 ml, 0.50 mmol). The reaction mixture was allowed to cool, the solid separated was filtered, dried and recrystallized from ethanol. The yield was found to be 5.7 g (69 %). M. p. 381-383 K (Holla & Udupa, 1992).

Refinement

Atoms H1N1, H1N2 and H2N2 were located from the difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93 and 0.97 Å and Uiso(H) = 1.2 Ueq(C). In the absence of significant anomalous dispersion, 648 Friedel pairs were merged for the final refinement.

Figures

Fig. 1.
The molecular structure of (I), showing 30% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The crystal structure of (I) viewed along the c axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C8H10N2O2F(000) = 176
Mr = 166.18Dx = 1.362 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2286 reflections
a = 6.3397 (8) Åθ = 3.3–30.1°
b = 4.0590 (6) ŵ = 0.10 mm1
c = 15.948 (2) ÅT = 100 K
β = 99.218 (10)°Needle, colourless
V = 405.09 (10) Å30.63 × 0.16 × 0.08 mm
Z = 2

Data collection

Bruker SMART APEXII CCD diffractometer1063 independent reflections
Radiation source: fine-focus sealed tube916 reflections with I > 2σ(I)
graphiteRint = 0.045
[var phi] and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −8→8
Tmin = 0.940, Tmax = 0.992k = −5→5
3771 measured reflectionsl = −20→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0857P)2] where P = (Fo2 + 2Fc2)/3
1063 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = −0.24 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.5379 (2)0.5753 (5)0.30334 (10)0.0244 (5)
O20.9591 (3)0.0417 (5)0.39131 (11)0.0253 (5)
N10.6740 (3)0.2420 (6)0.44403 (13)0.0209 (5)
N20.7205 (3)0.0646 (7)0.52119 (14)0.0232 (5)
C10.2408 (4)0.8607 (7)0.23319 (17)0.0258 (6)
H1A0.19730.89070.28570.031*
C20.1199 (4)0.9836 (7)0.16016 (18)0.0303 (7)
H2A−0.00591.09650.16390.036*
C30.1825 (4)0.9417 (8)0.08136 (18)0.0309 (7)
H3A0.09971.02500.03260.037*
C40.3696 (4)0.7745 (8)0.07658 (16)0.0295 (7)
H4A0.41220.74430.02390.035*
C50.4956 (4)0.6502 (7)0.14908 (16)0.0258 (6)
H5A0.62280.54130.14530.031*
C60.4291 (4)0.6909 (7)0.22719 (15)0.0214 (6)
C70.7239 (4)0.3818 (7)0.29959 (16)0.0220 (6)
H7A0.83820.52230.28670.026*
H7B0.69310.21930.25470.026*
C80.7937 (3)0.2108 (7)0.38313 (15)0.0204 (5)
H1N10.567 (5)0.375 (11)0.4326 (19)0.041 (9)*
H1N20.785 (5)−0.132 (9)0.5068 (17)0.028 (8)*
H2N20.822 (5)0.192 (9)0.5594 (16)0.025 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0127 (8)0.0297 (10)0.0306 (9)0.0070 (9)0.0027 (6)0.0003 (10)
O20.0106 (7)0.0249 (10)0.0406 (10)0.0054 (9)0.0043 (7)−0.0005 (9)
N10.0087 (8)0.0220 (12)0.0313 (11)0.0008 (9)0.0011 (8)0.0003 (10)
N20.0128 (9)0.0240 (12)0.0324 (12)0.0001 (11)0.0021 (8)0.0002 (12)
C10.0160 (11)0.0247 (15)0.0372 (14)0.0009 (12)0.0056 (10)0.0005 (13)
C20.0162 (11)0.0268 (16)0.0462 (16)0.0008 (12)0.0001 (11)0.0014 (14)
C30.0267 (13)0.0245 (14)0.0373 (15)−0.0017 (14)−0.0072 (11)0.0023 (13)
C40.0320 (14)0.0251 (16)0.0308 (13)0.0006 (14)0.0034 (11)0.0004 (13)
C50.0192 (12)0.0235 (15)0.0348 (13)0.0008 (12)0.0043 (10)−0.0014 (12)
C60.0143 (10)0.0179 (12)0.0311 (13)−0.0030 (11)0.0003 (9)0.0004 (12)
C70.0098 (10)0.0221 (14)0.0345 (13)0.0019 (11)0.0048 (9)−0.0033 (12)
C80.0102 (10)0.0172 (11)0.0329 (13)−0.0029 (11)0.0004 (9)−0.0045 (12)

Geometric parameters (Å, °)

O1—C61.379 (3)C2—C31.388 (4)
O1—C71.425 (3)C2—H2A0.9300
O2—C81.243 (3)C3—C41.379 (4)
N1—C81.331 (3)C3—H3A0.9300
N1—N21.416 (3)C4—C51.391 (4)
N1—H1N10.86 (4)C4—H4A0.9300
N2—H1N20.94 (4)C5—C61.387 (3)
N2—H2N20.96 (3)C5—H5A0.9300
C1—C21.381 (4)C7—C81.505 (4)
C1—C61.395 (3)C7—H7A0.9700
C1—H1A0.9300C7—H7B0.9700
C6—O1—C7116.79 (18)C3—C4—H4A119.4
C8—N1—N2121.5 (2)C5—C4—H4A119.4
C8—N1—H1N1115 (2)C6—C5—C4119.1 (2)
N2—N1—H1N1123 (2)C6—C5—H5A120.4
N1—N2—H1N2104.9 (17)C4—C5—H5A120.4
N1—N2—H2N2107.6 (19)O1—C6—C5124.7 (2)
H1N2—N2—H2N2110 (3)O1—C6—C1114.9 (2)
C2—C1—C6119.1 (2)C5—C6—C1120.5 (2)
C2—C1—H1A120.5O1—C7—C8110.18 (19)
C6—C1—H1A120.5O1—C7—H7A109.6
C1—C2—C3121.2 (2)C8—C7—H7A109.6
C1—C2—H2A119.4O1—C7—H7B109.6
C3—C2—H2A119.4C8—C7—H7B109.6
C4—C3—C2118.9 (2)H7A—C7—H7B108.1
C4—C3—H3A120.5O2—C8—N1123.1 (2)
C2—C3—H3A120.5O2—C8—C7118.1 (2)
C3—C4—C5121.1 (2)N1—C8—C7118.7 (2)
C6—C1—C2—C3−0.1 (4)C2—C1—C6—O1−179.5 (2)
C1—C2—C3—C4−0.1 (4)C2—C1—C6—C50.9 (4)
C2—C3—C4—C5−0.4 (5)C6—O1—C7—C8−166.8 (2)
C3—C4—C5—C61.2 (4)N2—N1—C8—O2−4.2 (4)
C7—O1—C6—C5−4.4 (4)N2—N1—C8—C7174.4 (2)
C7—O1—C6—C1176.0 (2)O1—C7—C8—O2−177.3 (2)
C4—C5—C6—O1179.0 (2)O1—C7—C8—N14.0 (3)
C4—C5—C6—C1−1.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2i0.86 (4)2.21 (3)2.953 (3)144 (3)
N2—H1N2···O2ii0.94 (4)2.49 (3)3.110 (3)124 (2)
N2—H2N2···O2iii0.96 (3)2.05 (3)2.986 (3)163 (2)
C1—H1A···O2iv0.932.513.396 (3)159

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+2, y−1/2, −z+1; (iii) −x+2, y+1/2, −z+1; (iv) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5256).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fun, H.-K., Quah, C. K., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o1184–o1185. [PMC free article] [PubMed]
  • Holla, B. S. & Udupa, K. V. (1992). Farmaco, 47, 305–318. [PubMed]
  • Kamal, A., Khan, N. A., Reddy, K. S. & Rohini, K. (2007). Bioorg. Med. Chem.15, 1004–1013. [PubMed]
  • Kumar, P., Narasimhan, B., Sharma, D., Judge, V. & Narang, R. (2009). Eur. J. Med. Chem.44, 1853–1863. [PubMed]
  • Masunari, A. & Tavares, L. C. (2007). Bioorg. Med. Chem.15, 4229–4236. [PubMed]
  • Rando, D. G., Avery, M. A., Tekwani, B. L., Khan, S. I. & Ferreira, E. I. (2008). Bioorg. Med. Chem.16, 6724–6731. [PubMed]
  • Rando, D. G., Sato, D. N., Siqueira, L., Malvezzi, A., Leite, C. Q. F., do Amaral, A. T., Ferreira, E. I. & Tavares, L. C. (2002). Bioorg. Med. Chem.10, 557–560. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography