PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o234.
Published online 2009 December 24. doi:  10.1107/S1600536809054373
PMCID: PMC2980086

2-(2-Pyridylsulfan­yl)acetic acid

Abstract

All non-H atoms of the title compound, C7H7NO2S, lie on a crystallographic mirror plane, with the two methyl­ene H atoms bis­ected by this plane. The crystal packing is characterized by inter­molecular C—H(...)O and O—H(...)N contacts, which link the mol­ecules into infinite zigzag chains parallel to [010].

Related literature

For background to the design of similar ligands, see: Akrivos (2001 [triangle]); Ye et al. (2005 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o234-scheme1.jpg

Experimental

Crystal data

  • C7H7NO2S
  • M r = 169.20
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o234-efi1.jpg
  • a = 14.5521 (19) Å
  • b = 6.6774 (13) Å
  • c = 7.7212 (19) Å
  • V = 750.3 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 293 K
  • 0.37 × 0.35 × 0.27 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.875, T max = 0.906
  • 1160 measured reflections
  • 805 independent reflections
  • 473 reflections with I > 2σ(I)
  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.140
  • S = 1.00
  • 805 reflections
  • 67 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809054373/sj2712sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054373/sj2712Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Project of the Shanghai Municipal Education Commission (2008080, 2008068, 09YZ245, 10YZ111, 10ZZ98), the ‘Chen Guang’ project supported by the Shanghai Municipal Education Commission and the Shanghai Education Development Foundation (09 C G52), the Innovative Activities of University Students in Shanghai Maritime University Project (090503) and the State Key Laboratory of Pollution Control and Resource Re-use Foundation (PCRRF09001) for financial support.

supplementary crystallographic information

Comment

Compounds involving heterocyclic thiolate groups are ambidentate ligands which can form various metal-organic coordination structures via coordination of the exocyclic sulfur or the endocyclic nitrogen atoms (Akrivos, 2001). Similarly, carboxylic acids also exhibit diverse coordination modes in different metal complexes (Ye et al., 2005). In attempts to develop novel coordination frameworks, we have designed and synthesized the title compound, 2-(pyridin-2-ylthio)acetic acid (I), as a potentially multidentate ligand. Its crystal structure is reported here.

The single-crystal X-ray analysis of I reveals that all the bond lengths in compound I are within normal ranges (Allen et al., 1987). All the non-hydrogen atoms in each molecule are coplanar with the methylene hydrogen atoms related by mirror symmetry (Fig. 1). In the crystal structure molecules are linked into infinite, one dimensional, zigzag chains due to intermolecular H-bonding (Fig. 2, Table 2).

Experimental

The title compound was prepared by heating a mixture of 2-pyridinethione (0.335 g, 3 mmol), chloroacetic acid (0.292 g, 3.1 mmol) and sodium hydroxide (0.248 g, 6.2 mmol) in ethanol at 353 K with magnetic stirring for 8 h. The pH of the solution was adjusted to 6 with hydrochloric acid. Yellow crystals were obtained after being recrystrallized twice from the ethanol solution (yield 78%). Analysis, calculated for C7H7NO2S: C 49.69, H 4.17, N 8.28%; Found: C 50.06, H 4.27, N 8.06%.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C) for aromatic 0.97Å, Uiso = 1.2Ueq (C) for CH2, and 0.82Å, Uiso = 1.5Ueq (O) for the OH group.

Figures

Fig. 1.
View of the structure of I. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Crystal packin of the title compound viewed down the b axis.

Crystal data

C7H7NO2SF(000) = 352
Mr = 169.20Dx = 1.498 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 343 reflections
a = 14.5521 (19) Åθ = 2.8–28.0°
b = 6.6774 (13) ŵ = 0.37 mm1
c = 7.7212 (19) ÅT = 293 K
V = 750.3 (3) Å3Block, yellow
Z = 40.37 × 0.35 × 0.27 mm

Data collection

Bruker APEXII CCD diffractometer805 independent reflections
Radiation source: fine-focus sealed tube473 reflections with I > 2σ(I)
graphiteRint = 0.066
[var phi] and ω scansθmax = 26.0°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −17→1
Tmin = 0.875, Tmax = 0.906k = −1→8
1160 measured reflectionsl = −9→1

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0634P)2] where P = (Fo2 + 2Fc2)/3
805 reflections(Δ/σ)max = 0.003
67 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.34558 (7)0.25000.33858 (14)0.0562 (6)
C10.5342 (3)0.25000.6916 (6)0.0583 (19)
H1A0.59810.25000.68790.070*
C20.4919 (3)0.25000.8503 (6)0.0560 (17)
H2A0.52620.25000.95200.067*
C30.3973 (3)0.25000.8547 (6)0.0545 (17)
H3A0.36680.25000.96050.065*
C40.3481 (3)0.25000.7029 (5)0.0484 (15)
H4A0.28420.25000.70500.058*
C50.3950 (3)0.25000.5463 (5)0.0452 (15)
C60.2251 (2)0.25000.3861 (5)0.0459 (15)
H6A0.20930.13220.45330.055*0.50
H6B0.20930.36780.45330.055*0.50
C70.1723 (3)0.25000.2160 (6)0.0454 (15)
N10.4877 (2)0.25000.5405 (5)0.0474 (13)
O10.2095 (2)0.25000.0775 (4)0.0638 (13)
O20.08419 (18)0.25000.2437 (4)0.0557 (12)
H2B0.05690.25000.15080.084*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0240 (6)0.1177 (15)0.0269 (6)0.000−0.0001 (5)0.000
C10.025 (2)0.109 (6)0.041 (3)0.000−0.0074 (19)0.000
C20.042 (3)0.095 (5)0.031 (2)0.000−0.007 (2)0.000
C30.041 (3)0.099 (5)0.023 (2)0.0000.006 (2)0.000
C40.028 (2)0.086 (5)0.031 (2)0.0000.0029 (18)0.000
C50.023 (2)0.083 (5)0.030 (2)0.000−0.0021 (17)0.000
C60.0196 (19)0.088 (5)0.030 (2)0.000−0.0003 (17)0.000
C70.027 (2)0.080 (5)0.029 (2)0.0000.0009 (18)0.000
N10.0240 (17)0.088 (4)0.0304 (18)0.000−0.0001 (15)0.000
O10.0268 (15)0.134 (4)0.0310 (16)0.000−0.0006 (13)0.000
O20.0211 (16)0.112 (4)0.0345 (16)0.000−0.0018 (13)0.000

Geometric parameters (Å, °)

S1—C51.757 (4)C4—C51.389 (6)
S1—C61.791 (4)C4—H4A0.9300
C1—N11.348 (5)C5—N11.350 (5)
C1—C21.372 (6)C6—C71.522 (6)
C1—H1A0.9300C6—H6A0.9700
C2—C31.377 (6)C6—H6B0.9700
C2—H2A0.9300C7—O11.198 (5)
C3—C41.374 (6)C7—O21.301 (5)
C3—H3A0.9300O2—H2B0.8200
C5—S1—C6102.31 (19)N1—C5—S1112.3 (3)
N1—C1—C2123.2 (4)C4—C5—S1126.4 (3)
N1—C1—H1A118.4C7—C6—S1108.5 (3)
C2—C1—H1A118.4C7—C6—H6A110.0
C1—C2—C3118.1 (4)S1—C6—H6A110.0
C1—C2—H2A121.0C7—C6—H6B110.0
C3—C2—H2A121.0S1—C6—H6B110.0
C4—C3—C2120.0 (4)H6A—C6—H6B108.4
C4—C3—H3A120.0O1—C7—O2126.3 (4)
C2—C3—H3A120.0O1—C7—C6122.9 (4)
C3—C4—C5119.1 (4)O2—C7—C6110.8 (4)
C3—C4—H4A120.4C1—N1—C5118.3 (4)
C5—C4—H4A120.4C7—O2—H2B109.5
N1—C5—C4121.3 (4)
N1—C1—C2—C30.000 (1)C5—S1—C6—C7180.0
C1—C2—C3—C40.000 (1)S1—C6—C7—O10.0
C2—C3—C4—C50.000 (1)S1—C6—C7—O2180.0
C3—C4—C5—N10.0C2—C1—N1—C50.0
C3—C4—C5—S1180.0C4—C5—N1—C10.0
C6—S1—C5—N1180.0S1—C5—N1—C1180.0
C6—S1—C5—C40.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2B···N1i0.821.792.606 (5)175
C2—H2A···O2ii0.932.503.410 (6)167
C3—H3A···O1iii0.932.463.229 (5)140

Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) x+1/2, y, −z+3/2; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2712).

References

  • Akrivos, P. D. (2001). Coord. Chem. Rev.213, 181–210.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Ye, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev.249, 545–565.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography