PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m53.
Published online 2009 December 12. doi:  10.1107/S1600536809052799
PMCID: PMC2980060

Poly[diaqua­bis(μ-4-carb­oxy-2-propyl-1H-imidazole-5-carboxyl­ato-κ3 N 3,O 4:O 5)calcium(II)]

Abstract

In the title complex, [Ca(C8H9N2O4)2(H2O)2]n, the CaII atom is eight-coordinated in a distorted square-anti­prismatic environment. The water-coordinated Ca atom is N,O-chelated by the monocarboxyl­ate anion; the carboxyl –CO2 portion engaged in chelation bears an acid hydrogen. The free –CO2 portion engages in bonding to adjacent Ca atoms. The CaII centres are connected through the ligand, forming a layer structure; the layers are linked by hydrogen bonds into a three-dimensional network.

Related literature

For the potential uses and diverse structrual types of structures containing metals and N-heterocyclic carboxylic acids, see: Liang et al. (2002 [triangle]); Net et al. (1989 [triangle]); Nie et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00m53-scheme1.jpg

Experimental

Crystal data

  • [Ca(C8H9N2O4)2(H2O)2]
  • M r = 470.46
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00m53-efi2.jpg
  • a = 12.703 (3) Å
  • b = 13.006 (3) Å
  • c = 11.697 (2) Å
  • β = 97.864 (2)°
  • V = 1914.3 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.40 mm−1
  • T = 273 K
  • 0.32 × 0.24 × 0.20 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.884, T max = 0.925
  • 4830 measured reflections
  • 1718 independent reflections
  • 1504 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.099
  • S = 1.02
  • 1718 reflections
  • 144 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809052799/ng2702sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052799/ng2702Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Guang Dong Ocean University for supporting this work.

supplementary crystallographic information

Comment

Recently, structures containing metals and N-heterocyclic carboxylic acids has attracted much attention, they can function as a multidentate ligand, exhibiting diverse structrual type and can be potentially used as functional materials (Nie et al., 2007; Liang et al.,2002; Net et al., 1989). In this paper, we report the synthesis and structure of a new Ca(II) complex obtained from 2-Propyl-1H- imidazole-4,5-dicarboxy with metal salts under hydrothermal conditions.

As illustrated in figure 1, the title complex molecule is eight-coordinated by two chelating rings [Ca—N=2.5998 (15)Å and Ca—O=2.605 (5) Å] and two carboxylate O atoms from two different 2-Propyl-1H-imidazole-4,5-dicarboxylate ligands and two water molecules, exhibiting a distorted square antiprismatic structure, the title Complex displays an extended two-dimensional layer structure constructed of quasi-squares, with four Ca atoms at the corners and 2-Propyl-1H-imidazole-4,5-dicarboxylate anions at each edge as linkers connecting two Ca atoms. the edge lengthes are equal, with a value of 9.0901 (16) Å. the angles of the rhombus are 88.650 (2)° and 91.350 (5)°(Fig. 2). Two dimensional layers are further linked by hydrogen bonds(Table 1), forming a three-dimensional network(Fig. 3)

Experimental

A mixture of Ca(II)chloride (0.5 mmol, 0.055 g) and 2-propyl-1H-imidazole-4,5-dicarboxylic acid(0.5 mmol, 0.99 g) in 10 ml of distilled water was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 433k for 3 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement

Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N). The water H-atoms were located in a difference map, and were refined with a distance restraint of O—H = 0.84 Å; their Uiso values were refined.

Figures

Fig. 1.
The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids(H atoms are represented by arbitrary spheres). [Symmetry codes:[(A)1 - x,y,1.5 - z;(B)-1/2 + x,1/2 + y,z;(C)1.5 ...
Fig. 2.
A view of an extended two-dimensional layer structure of the title compound.
Fig. 3.
View the three-dimensional network.

Crystal data

[Ca(C8H9N2O4)2(H2O)2]F(000) = 984
Mr = 470.46Dx = 1.632 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3600 reflections
a = 12.703 (3) Åθ = 1.4–28°
b = 13.006 (3) ŵ = 0.40 mm1
c = 11.697 (2) ÅT = 273 K
β = 97.864 (2)°Block, white
V = 1914.3 (7) Å30.32 × 0.24 × 0.20 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer1718 independent reflections
Radiation source: fine-focus sealed tube1504 reflections with I > 2σ(I)
graphiteRint = 0.040
[var phi] and ω scanθmax = 25.2°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −13→15
Tmin = 0.884, Tmax = 0.925k = −14→15
4830 measured reflectionsl = −14→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.099w = 1/[σ2(Fo2) + (0.0551P)2 + 1.470P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1718 reflectionsΔρmax = 0.29 e Å3
144 parametersΔρmin = −0.23 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0076 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ca10.50000.07420 (4)0.25000.0189 (2)
O10.33875 (11)0.05035 (10)0.36313 (12)0.0262 (3)
O1W0.55495 (11)0.10622 (11)0.45862 (12)0.0319 (4)
H1W0.51210.13470.49700.048*
H2W0.57690.05190.49040.048*
O20.20033 (11)0.11430 (10)0.43530 (13)0.0296 (4)
H10.16630.16800.43160.044*
O30.09452 (11)0.27478 (11)0.42169 (12)0.0308 (4)
O40.09469 (12)0.42512 (10)0.33195 (13)0.0352 (4)
N10.36595 (12)0.22589 (11)0.23987 (13)0.0201 (4)
N20.26433 (12)0.36382 (11)0.21921 (13)0.0225 (4)
H20.24030.42290.19510.027*
C10.28670 (14)0.21777 (14)0.30920 (15)0.0192 (4)
C20.22299 (14)0.30376 (14)0.29747 (16)0.0209 (4)
C30.34950 (14)0.31557 (14)0.18572 (16)0.0215 (4)
C40.27622 (14)0.12212 (14)0.37333 (16)0.0204 (4)
C50.40949 (15)0.36092 (15)0.09774 (17)0.0255 (4)
H5A0.47530.32310.09740.031*
H5B0.42770.43150.11890.031*
C60.34718 (17)0.35929 (17)−0.02384 (18)0.0334 (5)
H6A0.33990.2888−0.05080.040*
H6B0.27640.3865−0.02120.040*
C70.40144 (19)0.42208 (18)−0.1082 (2)0.0382 (6)
H7A0.40670.4924−0.08320.057*
H7B0.36060.4184−0.18350.057*
H7C0.47140.3952−0.11130.057*
C80.13058 (15)0.33836 (15)0.35251 (16)0.0240 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ca10.0189 (3)0.0157 (3)0.0229 (3)0.0000.0052 (2)0.000
O10.0267 (7)0.0187 (7)0.0336 (8)0.0026 (6)0.0051 (6)0.0014 (6)
O1W0.0345 (8)0.0327 (8)0.0299 (8)0.0035 (6)0.0095 (6)0.0011 (6)
O20.0303 (8)0.0228 (7)0.0384 (8)0.0041 (6)0.0140 (7)0.0073 (6)
O30.0295 (8)0.0300 (8)0.0360 (8)0.0045 (6)0.0155 (6)0.0036 (6)
O40.0385 (9)0.0295 (8)0.0394 (9)0.0182 (6)0.0119 (7)0.0052 (6)
N10.0188 (8)0.0190 (8)0.0231 (8)0.0000 (6)0.0049 (6)0.0001 (6)
N20.0250 (8)0.0157 (8)0.0275 (9)0.0045 (6)0.0059 (7)0.0042 (6)
C10.0185 (9)0.0192 (9)0.0198 (9)−0.0003 (7)0.0023 (7)−0.0013 (7)
C20.0219 (9)0.0200 (9)0.0212 (9)0.0015 (7)0.0046 (8)−0.0011 (7)
C30.0207 (9)0.0201 (9)0.0236 (10)−0.0007 (7)0.0027 (8)−0.0004 (7)
C40.0203 (9)0.0191 (9)0.0215 (10)−0.0007 (7)0.0020 (7)−0.0016 (7)
C50.0230 (10)0.0255 (10)0.0288 (11)−0.0018 (8)0.0062 (8)0.0047 (8)
C60.0311 (11)0.0350 (12)0.0332 (12)−0.0093 (9)0.0012 (9)0.0059 (9)
C70.0419 (13)0.0429 (13)0.0294 (12)−0.0077 (10)0.0037 (10)0.0069 (9)
C80.0235 (10)0.0266 (10)0.0219 (10)0.0022 (8)0.0035 (8)−0.0017 (8)

Geometric parameters (Å, °)

Ca1—O4i2.4104 (14)N1—C11.380 (2)
Ca1—O4ii2.4104 (14)N2—C31.354 (2)
Ca1—O1W2.4798 (15)N2—C21.362 (2)
Ca1—O1Wiii2.4799 (15)N2—H20.8600
Ca1—N1iii2.5982 (15)C1—C21.376 (3)
Ca1—N12.5982 (15)C1—C41.468 (3)
Ca1—O12.6048 (14)C2—C81.484 (3)
Ca1—O1iii2.6049 (14)C3—C51.484 (3)
O1—C41.242 (2)C5—C61.530 (3)
O1W—H1W0.8378C5—H5A0.9700
O1W—H2W0.8287C5—H5B0.9700
O2—C41.287 (2)C6—C71.517 (3)
O2—H10.8200C6—H6A0.9700
O3—C81.284 (2)C6—H6B0.9700
O4—C81.228 (2)C7—H7A0.9600
O4—Ca1iv2.4102 (14)C7—H7B0.9600
N1—C31.330 (2)C7—H7C0.9600
O4i—Ca1—O4ii72.89 (8)C3—N2—C2108.98 (15)
O4i—Ca1—O1W125.76 (5)C3—N2—H2125.5
O4ii—Ca1—O1W71.69 (5)C2—N2—H2125.5
O4i—Ca1—O1Wiii71.69 (5)C2—C1—N1110.21 (16)
O4ii—Ca1—O1Wiii125.76 (5)C2—C1—C4130.27 (17)
O1W—Ca1—O1Wiii160.66 (7)N1—C1—C4119.30 (15)
O4i—Ca1—N1iii156.52 (5)N2—C2—C1104.93 (16)
O4ii—Ca1—N1iii107.72 (5)N2—C2—C8121.21 (16)
O1W—Ca1—N1iii74.52 (5)C1—C2—C8133.83 (17)
O1Wiii—Ca1—N1iii90.68 (5)N1—C3—N2110.39 (16)
O4i—Ca1—N1107.72 (5)N1—C3—C5128.07 (17)
O4ii—Ca1—N1156.53 (5)N2—C3—C5121.51 (17)
O1W—Ca1—N190.68 (5)O1—C4—O2122.20 (17)
O1Wiii—Ca1—N174.52 (5)O1—C4—C1118.94 (16)
N1iii—Ca1—N181.19 (7)O2—C4—C1118.82 (16)
O4i—Ca1—O173.86 (5)C3—C5—C6112.93 (16)
O4ii—Ca1—O194.96 (5)C3—C5—H5A109.0
O1W—Ca1—O169.83 (5)C6—C5—H5A109.0
O1Wiii—Ca1—O1112.64 (5)C3—C5—H5B109.0
N1iii—Ca1—O1128.56 (5)C6—C5—H5B109.0
N1—Ca1—O163.74 (4)H5A—C5—H5B107.8
O4i—Ca1—O1iii94.96 (5)C7—C6—C5111.95 (17)
O4ii—Ca1—O1iii73.85 (5)C7—C6—H6A109.2
O1W—Ca1—O1iii112.64 (5)C5—C6—H6A109.2
O1Wiii—Ca1—O1iii69.82 (5)C7—C6—H6B109.2
N1iii—Ca1—O1iii63.74 (4)C5—C6—H6B109.2
N1—Ca1—O1iii128.56 (5)H6A—C6—H6B107.9
O1—Ca1—O1iii166.32 (6)C6—C7—H7A109.5
C4—O1—Ca1121.13 (12)C6—C7—H7B109.5
Ca1—O1W—H1W119.1H7A—C7—H7B109.5
Ca1—O1W—H2W109.3C6—C7—H7C109.5
H1W—O1W—H2W109.8H7A—C7—H7C109.5
C4—O2—H1109.5H7B—C7—H7C109.5
C8—O4—Ca1iv165.57 (15)O4—C8—O3124.05 (18)
C3—N1—C1105.49 (14)O4—C8—C2119.22 (17)
C3—N1—Ca1138.32 (12)O3—C8—C2116.72 (17)
C1—N1—Ca1116.18 (11)

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x+1/2, y−1/2, z; (iii) −x+1, y, −z+1/2; (iv) x−1/2, y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O1v0.862.012.859 (2)171
O1W—H2W···O1vi0.832.313.088 (2)156
O1W—H1W···O3vii0.842.122.947 (2)172

Symmetry codes: (v) −x+1/2, y+1/2, −z+1/2; (vi) −x+1, −y, −z+1; (vii) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2702).

References

  • Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liang, Y. C., Cao, R. & Hong, M. C. (2002). Inorg. Chem. Commun.5, 366–368.
  • Net, G., Bayon, J. C., Butler, W. M. & Rasmussen, P. (1989). J. Chem. Soc. Chem. Commun. pp. 1022–1023.
  • Nie, X.-L., Wen, H.-L., Wu, Z.-S., Liu, D.-B. & Liu, C.-B. (2007). Acta Cryst. E63, m753–m755.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography