PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m1.
Published online 2009 December 4. doi:  10.1107/S1600536809051162
PMCID: PMC2980057

catena-Poly[[diiodidocadmium(II)]-μ-4,4′-di-4-pyridyl-2,2′-disulfanediyldipyrimidine]

Abstract

In the title compound, [CdI2(C18H12N6S2)]n, the 4,4′-di-4-pyridyl-2,2′-disulfanediyldipyrimidine (L) ligand bridges two CdII centers, forming polymeric zigzag chains extending along the b axis. The CdII ions are coordinated by two N atoms from two L ligands and two iodide anions in a distorted tetra­hedral geometry.

Related literature

For coordination polymers with 4,4′-dipyridine­disulfide, see: Horikoshi & Mochida (2006 [triangle]). For coordination complexes with the title ligand L, see: Zhu et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-000m1-scheme1.jpg

Experimental

Crystal data

  • [CdI2(C18H12N6S2)]
  • M r = 742.69
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-000m1-efi1.jpg
  • a = 10.0145 (7) Å
  • b = 10.7294 (8) Å
  • c = 11.7217 (9) Å
  • α = 93.133 (1)°
  • β = 109.886 (1)°
  • γ = 97.726 (1)°
  • V = 1166.81 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.78 mm−1
  • T = 298 K
  • 0.20 × 0.15 × 0.12 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 1.9, T max = 28.9
  • 5935 measured reflections
  • 4037 independent reflections
  • 3073 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.057
  • S = 0.99
  • 4037 reflections
  • 262 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT-Plus (Bruker, 2007 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809051162/cv2663sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051162/cv2663Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges the finanical support from the China Postdoctoral Reseach Fund (grant No. 20070411010).

supplementary crystallographic information

Comment

Over past few years, organic aromatic disulfide has received considerable attention due to both its conformational flexibility and axial chirality (Horikoshi et al., 2006). In our previous study, we have reported two one-dimensional ZnII and FeII coordination polymers with the ligand L ( = 2, 2'-dithiobis(4-pyridin-4-ylpyrimidine) (Zhu et al., 2009). Herein, we report new one-dimensional CdII coordination chain generated by althernative linking of Cd center and ligand L.

The CdII ion in the title complex adopts a tetrahedral coordination geometry completed by two N atoms from two ligands L [Cd1—N1 2.287 (3) Å; Cd1—N6 2.289 (4) Å] and two I anions [I1—Cd1 2.6938 (4) Å; I2—Cd1 2.6962 (4) Å]. In L, the C—S—S—C torsion angle is 84.1 (2)°.

Experimental

Slowly added is the CH2Cl2 (5 ml) solution of ligand L (0.1 mmol) into the CdI2 (0.1 mmol) solution in methanol (10 ml). The mixture was kept on standing for three days to give single crystals suitable for X-ray diffraction analysis.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The coordination environment of the CdII center in the title compound with 30% probability displacement ellipsoids. Unlabelled atoms are related with the labelled ones by symmetry operation (x, y + 1, z). H atoms omitted for clarity.

Crystal data

[CdI2(C18H12N6S2)]Z = 2
Mr = 742.69F(000) = 696
Triclinic, P1Dx = 2.114 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0145 (7) ÅCell parameters from 4037 reflections
b = 10.7294 (8) Åθ = 2.3–25.5°
c = 11.7217 (9) ŵ = 3.78 mm1
α = 93.133 (1)°T = 298 K
β = 109.886 (1)°Block, colourless
γ = 97.726 (1)°0.20 × 0.15 × 0.12 mm
V = 1166.81 (15) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer4037 independent reflections
Radiation source: fine-focus sealed tube3073 reflections with I > 2σ(I)
graphiteRint = 0.015
[var phi] and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −7→11
Tmin = 1.9, Tmax = 28.9k = −12→12
5935 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0238P)2] where P = (Fo2 + 2Fc2)/3
4037 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I21.04050 (3)0.30244 (3)−0.04759 (3)0.06234 (11)
I10.58853 (3)0.01728 (3)−0.20478 (3)0.07768 (13)
Cd10.80005 (3)0.17348 (3)−0.02843 (3)0.05367 (11)
S10.66738 (13)0.72678 (11)0.58132 (11)0.0647 (3)
S20.83801 (13)0.63432 (12)0.62502 (11)0.0666 (3)
N10.6891 (4)0.3069 (3)0.0542 (3)0.0487 (9)
N20.6043 (3)0.5841 (3)0.3679 (3)0.0466 (8)
N30.4190 (4)0.6770 (3)0.4080 (4)0.0593 (10)
C60.5105 (4)0.5314 (3)0.2591 (4)0.0426 (10)
C40.7136 (4)0.4798 (4)0.2009 (4)0.0526 (11)
H4A0.77360.54650.25650.063*
C90.5529 (4)0.6526 (4)0.4357 (4)0.0508 (11)
C80.3282 (5)0.6238 (4)0.2986 (5)0.0618 (13)
H8A0.23340.63790.27390.074*
C30.7684 (4)0.4046 (4)0.1332 (4)0.0523 (11)
H3B0.86550.42380.14370.063*
C50.5695 (4)0.4544 (3)0.1849 (4)0.0423 (10)
C20.5492 (5)0.2843 (4)0.0378 (4)0.0632 (13)
H2B0.49110.2178−0.01910.076*
C10.4868 (5)0.3542 (4)0.1005 (4)0.0606 (13)
H1A0.38890.33430.08640.073*
C70.3683 (4)0.5492 (4)0.2207 (4)0.0530 (11)
H7A0.30260.51220.14540.064*
N50.9147 (3)0.7871 (3)0.4735 (3)0.0474 (8)
C131.0157 (4)0.8354 (4)0.4271 (4)0.0493 (11)
C140.9704 (4)0.9207 (4)0.3321 (4)0.0459 (10)
C100.9551 (5)0.7070 (4)0.5546 (4)0.0571 (12)
N41.0789 (5)0.6629 (4)0.5948 (4)0.0815 (13)
C181.0671 (4)0.9895 (4)0.2893 (4)0.0548 (12)
H18A1.16510.98780.32520.066*
C150.8267 (5)0.9313 (4)0.2767 (5)0.0637 (13)
H15A0.75760.88890.30360.076*
C121.1494 (5)0.7979 (5)0.4649 (5)0.0737 (14)
H12A1.21980.83060.43450.088*
C111.1754 (6)0.7115 (6)0.5484 (5)0.0934 (18)
H11A1.26500.68560.57360.112*
C171.0191 (5)1.0597 (4)0.1950 (5)0.0566 (12)
H17A1.08641.10440.16760.068*
N60.8813 (4)1.0678 (3)0.1399 (3)0.0537 (9)
C160.7870 (5)1.0040 (4)0.1829 (5)0.0697 (14)
H16A0.69001.00970.14700.084*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I20.04535 (17)0.0650 (2)0.0747 (2)−0.00692 (14)0.02573 (16)−0.00033 (16)
I10.04633 (19)0.0866 (2)0.0967 (3)−0.00948 (16)0.03348 (19)−0.0232 (2)
Cd10.04412 (19)0.05401 (19)0.0674 (3)0.00516 (14)0.02683 (18)0.00403 (16)
S10.0556 (7)0.0817 (8)0.0595 (9)0.0022 (6)0.0296 (7)−0.0090 (7)
S20.0583 (8)0.0876 (9)0.0536 (9)0.0064 (6)0.0201 (6)0.0158 (7)
N10.043 (2)0.051 (2)0.053 (2)0.0078 (17)0.0185 (18)0.0044 (18)
N20.0358 (19)0.053 (2)0.053 (2)0.0038 (16)0.0198 (18)0.0010 (17)
N30.048 (2)0.063 (2)0.073 (3)0.0126 (19)0.028 (2)0.005 (2)
C60.036 (2)0.040 (2)0.053 (3)0.0036 (18)0.017 (2)0.009 (2)
C40.043 (2)0.056 (3)0.056 (3)0.003 (2)0.016 (2)−0.002 (2)
C90.043 (3)0.053 (2)0.059 (3)0.003 (2)0.024 (2)0.007 (2)
C80.042 (3)0.066 (3)0.085 (4)0.019 (2)0.028 (3)0.014 (3)
C30.032 (2)0.066 (3)0.059 (3)0.002 (2)0.020 (2)0.005 (2)
C50.037 (2)0.044 (2)0.049 (3)0.0089 (18)0.019 (2)0.010 (2)
C20.043 (3)0.063 (3)0.076 (4)−0.003 (2)0.020 (3)−0.019 (3)
C10.041 (2)0.064 (3)0.074 (4)0.002 (2)0.021 (2)−0.008 (3)
C70.043 (3)0.059 (3)0.053 (3)0.009 (2)0.011 (2)0.004 (2)
N50.0379 (19)0.061 (2)0.042 (2)0.0099 (16)0.0132 (17)0.0014 (18)
C130.045 (2)0.055 (2)0.050 (3)0.007 (2)0.021 (2)−0.009 (2)
C140.038 (2)0.054 (2)0.047 (3)0.0098 (19)0.018 (2)−0.004 (2)
C100.045 (3)0.077 (3)0.050 (3)0.014 (2)0.016 (2)0.002 (3)
N40.066 (3)0.125 (4)0.070 (3)0.038 (3)0.033 (3)0.037 (3)
C180.036 (2)0.061 (3)0.068 (4)0.004 (2)0.022 (2)0.000 (2)
C150.040 (3)0.087 (3)0.075 (4)0.008 (2)0.031 (3)0.024 (3)
C120.047 (3)0.113 (4)0.076 (4)0.027 (3)0.033 (3)0.024 (3)
C110.059 (3)0.154 (6)0.087 (5)0.052 (4)0.034 (3)0.046 (4)
C170.043 (3)0.054 (3)0.077 (4)0.001 (2)0.029 (3)0.003 (3)
N60.046 (2)0.054 (2)0.069 (3)0.0120 (17)0.028 (2)0.0135 (18)
C160.038 (3)0.091 (4)0.092 (4)0.017 (2)0.033 (3)0.034 (3)

Geometric parameters (Å, °)

I2—Cd12.6962 (4)C2—H2B0.9300
I1—Cd12.6938 (5)C1—H1A0.9300
Cd1—N12.287 (3)C7—H7A0.9300
Cd1—N6i2.290 (4)N5—C101.314 (5)
S1—C91.771 (4)N5—C131.360 (5)
S1—S22.0205 (19)C13—C121.383 (6)
S2—C101.774 (4)C13—C141.470 (6)
N1—C31.326 (5)C14—C181.383 (5)
N1—C21.334 (5)C14—C151.386 (6)
N2—C91.325 (4)C10—N41.330 (6)
N2—C61.338 (5)N4—C111.325 (6)
N3—C91.334 (5)C18—C171.359 (6)
N3—C81.336 (5)C18—H18A0.9300
C6—C71.383 (5)C15—C161.362 (6)
C6—C51.480 (5)C15—H15A0.9300
C4—C51.378 (5)C12—C111.370 (7)
C4—C31.388 (5)C12—H12A0.9300
C4—H4A0.9300C11—H11A0.9300
C8—C71.376 (5)C17—N61.326 (5)
C8—H8A0.9300C17—H17A0.9300
C3—H3B0.9300N6—C161.343 (5)
C5—C11.381 (5)N6—Cd1ii2.290 (4)
C2—C11.367 (5)C16—H16A0.9300
N1—Cd1—N6i96.12 (11)C5—C1—H1A120.0
N1—Cd1—I1106.24 (9)C8—C7—C6117.1 (4)
N6i—Cd1—I1108.88 (8)C8—C7—H7A121.4
N1—Cd1—I2109.95 (8)C6—C7—H7A121.4
N6i—Cd1—I2104.57 (8)C10—N5—C13115.5 (4)
I1—Cd1—I2126.810 (15)N5—C13—C12119.8 (4)
C9—S1—S2104.45 (14)N5—C13—C14116.3 (4)
C10—S2—S1106.08 (18)C12—C13—C14123.7 (4)
C3—N1—C2117.0 (3)C18—C14—C15116.6 (4)
C3—N1—Cd1119.2 (2)C18—C14—C13122.1 (4)
C2—N1—Cd1123.3 (3)C15—C14—C13121.3 (4)
C9—N2—C6116.3 (3)N5—C10—N4129.3 (4)
C9—N3—C8114.5 (3)N5—C10—S2121.9 (3)
N2—C6—C7121.2 (3)N4—C10—S2108.7 (4)
N2—C6—C5115.6 (3)C11—N4—C10114.0 (5)
C7—C6—C5123.3 (4)C17—C18—C14120.1 (4)
C5—C4—C3119.2 (4)C17—C18—H18A120.0
C5—C4—H4A120.4C14—C18—H18A120.0
C3—C4—H4A120.4C16—C15—C14119.9 (4)
N2—C9—N3127.8 (4)C16—C15—H15A120.1
N2—C9—S1120.2 (3)C14—C15—H15A120.1
N3—C9—S1112.0 (3)C11—C12—C13118.2 (4)
N3—C8—C7123.1 (4)C11—C12—H12A120.9
N3—C8—H8A118.4C13—C12—H12A120.9
C7—C8—H8A118.4N4—C11—C12123.1 (5)
N1—C3—C4123.3 (4)N4—C11—H11A118.5
N1—C3—H3B118.4C12—C11—H11A118.5
C4—C3—H3B118.4N6—C17—C18123.5 (4)
C4—C5—C1117.2 (3)N6—C17—H17A118.2
C4—C5—C6119.8 (4)C18—C17—H17A118.2
C1—C5—C6122.9 (3)C17—N6—C16116.9 (4)
N1—C2—C1123.2 (4)C17—N6—Cd1ii123.1 (3)
N1—C2—H2B118.4C16—N6—Cd1ii119.9 (3)
C1—C2—H2B118.4N6—C16—C15123.0 (4)
C2—C1—C5120.0 (4)N6—C16—H16A118.5
C2—C1—H1A120.0C15—C16—H16A118.5
C9—S1—S2—C1084.1 (2)N3—C8—C7—C6−1.0 (6)
N6i—Cd1—N1—C376.8 (3)N2—C6—C7—C80.5 (6)
I1—Cd1—N1—C3−171.5 (3)C5—C6—C7—C8−179.6 (4)
I2—Cd1—N1—C3−31.2 (3)C10—N5—C13—C120.9 (6)
N6i—Cd1—N1—C2−95.6 (4)C10—N5—C13—C14177.3 (3)
I1—Cd1—N1—C216.2 (4)N5—C13—C14—C18171.0 (3)
I2—Cd1—N1—C2156.5 (3)C12—C13—C14—C18−12.8 (6)
C9—N2—C6—C70.4 (5)N5—C13—C14—C15−12.1 (5)
C9—N2—C6—C5−179.5 (3)C12—C13—C14—C15164.2 (4)
C6—N2—C9—N3−1.0 (6)C13—N5—C10—N4−2.6 (7)
C6—N2—C9—S1−180.0 (3)C13—N5—C10—S2−180.0 (3)
C8—N3—C9—N20.6 (6)S1—S2—C10—N5−11.3 (4)
C8—N3—C9—S1179.6 (3)S1—S2—C10—N4170.8 (3)
S2—S1—C9—N2−18.5 (3)N5—C10—N4—C112.6 (8)
S2—S1—C9—N3162.4 (3)S2—C10—N4—C11−179.7 (4)
C9—N3—C8—C70.4 (6)C15—C14—C18—C17−2.1 (6)
C2—N1—C3—C42.3 (6)C13—C14—C18—C17175.0 (4)
Cd1—N1—C3—C4−170.5 (3)C18—C14—C15—C161.9 (6)
C5—C4—C3—N1−1.2 (6)C13—C14—C15—C16−175.2 (4)
C3—C4—C5—C1−0.3 (6)N5—C13—C12—C110.5 (7)
C3—C4—C5—C6178.2 (4)C14—C13—C12—C11−175.7 (4)
N2—C6—C5—C4−26.6 (5)C10—N4—C11—C12−0.9 (8)
C7—C6—C5—C4153.5 (4)C13—C12—C11—N4−0.4 (9)
N2—C6—C5—C1151.8 (4)C14—C18—C17—N60.6 (6)
C7—C6—C5—C1−28.1 (6)C18—C17—N6—C161.2 (6)
C3—N1—C2—C1−2.0 (7)C18—C17—N6—Cd1ii−175.0 (3)
Cd1—N1—C2—C1170.5 (4)C17—N6—C16—C15−1.4 (7)
N1—C2—C1—C50.6 (7)Cd1ii—N6—C16—C15174.9 (4)
C4—C5—C1—C20.6 (6)C14—C15—C16—N6−0.1 (7)
C6—C5—C1—C2−177.9 (4)

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2663).

References

  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Horikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev.250, 2595–2609.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhu, H. B., Wang, H., Kong, F., Gou, S. H. & Sun, Y. M. (2009). J. Mol. Struct.936, 99–103.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography