PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m32.
Published online 2009 December 9. doi:  10.1107/S1600536809052118
PMCID: PMC2980047

Poly[bis(2,2′-bipyridine-κ2 N,N′)heptadeca-μ-oxido-tetraoxidodicopper(II)divanadate(IV)hexavanadate(V)]

Abstract

In the title complex, [Cu2V8O21(2,2′-bpy)2]n (bpy = bipyridine, C10H8N2), the asymmetric unit contains four independent V atoms briged by 11 O atoms, one of which lies on an inversion center, and a [Cu(2,2′-bpy)]2+ unit. Three V atoms in the polyoxoanion exhibit distorted tetra­hedral coordination geometries while the fourth V atom adopts a trigonal-bipyramidal geometry. The Cu atom adopts a square-pyramidal geometry being coordinated by two nitro­gen donors of a 2,2′-bpy ligand, and three bridging O atoms which are linked with V atoms. The V8 polyoxoanion is connected to [Cu(2,2′-bpy)]2+ cations, resulting in a two-dimensional layer structure extending parallel to (010). C—H(...)O hydrogen bonding consolidates the structure.

Related literature

For hybrid organic-inorganic vanadium oxides, see: Zapf et al. (1997 [triangle]); Liu et al. (2001 [triangle], 2002 [triangle]); Yuan et al. (2002 [triangle]). For the organic substituents, see: Girginova et al. (2005 [triangle]); Paz & Klinowski (2003 [triangle]); Shi et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00m32-scheme1.jpg

Experimental

Crystal data

  • [Cu2V8O21(C10H8N2)2]
  • M r = 591.48
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00m32-efi1.jpg
  • a = 8.0721 (16) Å
  • b = 9.764 (2) Å
  • c = 11.607 (2) Å
  • α = 85.58 (3)°
  • β = 72.79 (3)°
  • γ = 72.28 (3)°
  • V = 832.4 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.48 mm−1
  • T = 293 K
  • 0.20 × 0.18 × 0.16 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.504, T max = 0.573
  • 7138 measured reflections
  • 3261 independent reflections
  • 2916 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.056
  • S = 1.06
  • 3261 reflections
  • 282 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: SHELXTL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536809052118/pv2241sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052118/pv2241Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The introduction of hydrothermal technique and the use of organic groups which were performed not only as template agents, but also as ligands directly coordinated to the inorganic units, have led to the production of various organic-inorganic hybrid vanadium oxides with discrete clusters, one-dimensional, two-dimensional and three-dimensional structures (Zapf et al., 1997; Liu et al., 2001; Liu et al., 2002; Yuan et al.,2002). Typically, the organic substituents have been presented as charge-compensating cations and structural filling agents. Examples of such compounds include the one-dimensional and the two-dimensional phases (Paz et al., 2003; Girginova et al., 2005, Shi et al., 2005). Following interest in the hydrothermal approach to the synthesis of this family of hybrid compounds, we have synthesized a novel organic-inorganic hybrid vanadium oxide complexed with [Cu(2,2'-bpy)]2+ cation (bpy = bipyridine), [{Cu(2,2'-bpy)}2V8O21], (I). In this article, the crystal structure of the title compound is presented.

The crystals of the title compound (Fig. 1) consist of an unusual two-dimensional layer-like structure grafted with [Cu(2,2'-bpy)]2+ complex. The asymmetric unit of (I) contsians four crystallographically independent V atoms briged by 11 oxygen atoms, one of which (O5) lies on an inversion center and a [Cu(2,2'-bpy)]2+ complex. The atoms V1, V3 and V4 exhibit distorted tetrahedral coordination geometry coordinated with four bridging oxygen atoms. V1 and V4 share oxygen atoms with one {CuN2O3} square pyramid unit, one {VO5} square pyramid unit and two {VO4} tetrahedra, while V3 shares oxygen atoms with one {CuN2O3} square pyramid unit, two {VO5} square pyramids and one {VO4} tetrahedron. The atom V2 shows a trigonal bipyramidal coordination geometry with O9 and O11 atoms in axial and O6, O8 and O10 atoms at equatorial positions. With the exception of O6, the remaining four oxygen atoms are linked with two symmetry related V3 atoms and another two are linked with V1 and V4. The Cu atom adopts a square pyramidal geometry being coordinated by two nitrogen donors of a 2,2'-bpy ligand, and three bridging oxygen atoms which are linked with V1, V3, and V4, respectively. As shown in Fig. 2, two {VO4} tetrahedra shared a corner to give rise to a V2O7 moiety, which further produce a {V8O21}n layer. Interestingly, each {CuN2O3} square pyramid attaches to three {VO4} tetrahedra of the vanadate layer via corner-sharing interaction. Therefore, the {[Cu(2,2'-bpy)]2V8O21}n layer consists of 4-, 5- and 6- membered rings. The adjacent layers are stably packed together and exhibit an interesting three-dimensional supramolecular architecture.

Experimental

The title compound was hydrothermally synthesized under autogenous pressure. A mixture of V2O5(0.66 g,3.6 mmol), As2O3(0.48 g,2.4 mmol), CuSO4.5H2O(0.75 g, 3 mmol), 2,2'-bipy (0.18 g, 1.2 mmol), 4,4'-bipy (0.24 g, 1.2 mmol) and 18 ml water was stirred for 120 min in air; it was adjusted to pH = 6.5 with 2M KOH, and was heated in a 25-ml stainless steel reactor with a Teflon-liner at 453 K for 3 days, and then cooled to room temperature. The resulting product consisting of brown block crystals was isolated by filtration, washed with distilled water, and dried at ambient temperature (51% yield based on V).

Refinement

The H atoms were located from difference Fourier maps and were allowed to refine with isotropic displacement factors.

Figures

Fig. 1.
ORTEP drawing of the title compound with thermal ellipsoids at 50% probability. [symmetry codes: (i) 1 - x, 2 - y,1 - z; (ii) - x, 2 - y, 1 - z; (iii) -1 + x, y, z; (iv) - x, 2 - y, 2 - z.]
Fig. 2.
A polyhedral representation of two-dimensional layer-like structure of the title compound. All of the hydrogen atoms are omitted forclarity. [symmetry codes: (i) 1 - x, 2 - y, 1 - z; (ii) - x, 2 - y, 1 - z; (iii) -1 + x, y, z; (iv) - x, 2 - y, 2 - z; ...

Crystal data

[Cu2V8O21(C10H8N2)2]Z = 2
Mr = 591.48F(000) = 574
Triclinic, P1Dx = 2.360 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0721 (16) ÅCell parameters from 3536 reflections
b = 9.764 (2) Åθ = 2.8–26.1°
c = 11.607 (2) ŵ = 3.48 mm1
α = 85.58 (3)°T = 293 K
β = 72.79 (3)°Block, brown
γ = 72.28 (3)°0.20 × 0.18 × 0.16 mm
V = 832.4 (3) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer3261 independent reflections
Radiation source: fine-focus sealed tube2916 reflections with I > 2σ(I)
graphiteRint = 0.018
Detector resolution: 10 pixels mm-1θmax = 26.1°, θmin = 2.2°
ω scansh = −9→9
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −12→12
Tmin = 0.504, Tmax = 0.573l = −14→14
7138 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0235P)2 + 0.7292P] where P = (Fo2 + 2Fc2)/3
3261 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2395 (4)0.5437 (3)0.9302 (3)0.0289 (7)
C20.2805 (5)0.4323 (3)1.0073 (3)0.0320 (7)
C30.4432 (5)0.3260 (3)0.9710 (3)0.0317 (7)
C40.5612 (4)0.3335 (3)0.8579 (3)0.0274 (6)
C50.5109 (4)0.4469 (3)0.7846 (2)0.0198 (6)
C60.6235 (4)0.4644 (3)0.6616 (2)0.0201 (6)
C70.7827 (4)0.3634 (3)0.6024 (3)0.0284 (7)
C80.8728 (4)0.3894 (3)0.4858 (3)0.0322 (7)
C90.8050 (4)0.5152 (3)0.4314 (3)0.0306 (7)
C100.6460 (4)0.6144 (3)0.4955 (3)0.0265 (6)
Cu10.31722 (4)0.71169 (3)0.70685 (3)0.01922 (9)
H10.128 (4)0.617 (3)0.952 (3)0.029 (8)*
H20.200 (4)0.430 (3)1.081 (3)0.029 (8)*
H30.472 (4)0.254 (4)1.021 (3)0.033 (9)*
H40.668 (4)0.267 (3)0.832 (3)0.029 (8)*
H50.823 (4)0.284 (4)0.644 (3)0.036 (9)*
H60.987 (4)0.315 (3)0.445 (3)0.029 (8)*
H70.865 (4)0.532 (3)0.356 (3)0.027 (8)*
H80.591 (4)0.703 (3)0.461 (3)0.026 (8)*
N10.3521 (3)0.5516 (2)0.8213 (2)0.0210 (5)
N20.5557 (3)0.5887 (2)0.6079 (2)0.0205 (5)
O10.4258 (3)0.8537 (2)0.79009 (18)0.0333 (5)
O20.3334 (3)1.0721 (2)0.41281 (17)0.0276 (4)
O30.3006 (3)0.8439 (2)0.57234 (18)0.0270 (4)
O40.0648 (3)0.8000 (2)0.79171 (18)0.0296 (5)
O50.00001.00000.50000.0330 (7)
O60.0361 (3)1.3383 (2)0.81792 (17)0.0274 (5)
O7−0.3076 (3)0.9544 (2)0.82587 (18)0.0308 (5)
O80.3910 (2)1.1332 (2)0.75539 (17)0.0262 (4)
O90.1379 (3)1.1176 (2)0.65337 (16)0.0244 (4)
O10−0.0633 (3)1.0792 (2)0.87494 (17)0.0247 (4)
O11−0.1608 (3)0.8630 (2)1.02173 (17)0.0284 (5)
V10.54061 (6)0.96749 (5)0.74290 (4)0.01637 (11)
V20.12848 (6)1.16967 (5)0.81859 (4)0.01575 (10)
V3−0.11097 (6)0.92167 (5)0.87896 (4)0.01417 (10)
V40.19437 (6)1.00633 (5)0.53774 (4)0.01430 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0296 (16)0.0257 (16)0.0275 (16)−0.0045 (14)−0.0062 (13)0.0000 (13)
C20.0417 (19)0.0330 (17)0.0197 (16)−0.0140 (15)−0.0046 (14)0.0047 (13)
C30.0436 (19)0.0250 (16)0.0297 (17)−0.0111 (14)−0.0167 (15)0.0108 (13)
C40.0263 (16)0.0228 (15)0.0316 (17)−0.0029 (13)−0.0113 (13)0.0033 (12)
C50.0228 (14)0.0174 (13)0.0222 (14)−0.0052 (11)−0.0113 (11)−0.0006 (11)
C60.0199 (14)0.0171 (13)0.0243 (14)−0.0036 (11)−0.0095 (11)−0.0003 (11)
C70.0241 (15)0.0252 (16)0.0335 (17)−0.0007 (13)−0.0115 (13)0.0008 (13)
C80.0220 (15)0.0311 (17)0.0360 (18)−0.0008 (13)−0.0030 (14)−0.0057 (14)
C90.0281 (16)0.0340 (17)0.0266 (17)−0.0104 (14)−0.0017 (13)−0.0011 (13)
C100.0281 (16)0.0274 (16)0.0238 (15)−0.0085 (13)−0.0079 (13)0.0045 (12)
Cu10.01834 (17)0.01617 (17)0.02058 (18)−0.00094 (13)−0.00635 (13)0.00129 (13)
N10.0232 (12)0.0174 (11)0.0210 (12)−0.0046 (9)−0.0061 (10)0.0021 (9)
N20.0209 (12)0.0172 (11)0.0233 (12)−0.0040 (9)−0.0080 (10)0.0016 (9)
O10.0460 (13)0.0461 (13)0.0204 (10)−0.0322 (11)−0.0096 (10)0.0041 (9)
O20.0322 (11)0.0334 (11)0.0166 (10)−0.0143 (9)−0.0020 (8)0.0021 (8)
O30.0280 (11)0.0242 (10)0.0260 (11)−0.0007 (9)−0.0119 (9)0.0042 (8)
O40.0204 (10)0.0293 (11)0.0314 (12)0.0006 (9)−0.0038 (9)−0.0022 (9)
O50.0244 (15)0.0468 (19)0.0342 (17)−0.0099 (14)−0.0179 (13)−0.0021 (14)
O60.0340 (11)0.0217 (10)0.0213 (10)−0.0047 (9)−0.0038 (9)0.0000 (8)
O70.0211 (10)0.0457 (13)0.0304 (12)−0.0080 (9)−0.0159 (9)−0.0024 (10)
O80.0198 (10)0.0335 (11)0.0233 (10)−0.0052 (9)−0.0064 (8)0.0014 (9)
O90.0282 (11)0.0295 (11)0.0163 (10)−0.0069 (9)−0.0084 (8)−0.0033 (8)
O100.0246 (10)0.0259 (10)0.0267 (11)−0.0124 (9)−0.0075 (8)0.0029 (8)
O110.0348 (12)0.0411 (12)0.0181 (10)−0.0201 (10)−0.0132 (9)0.0078 (9)
V10.0148 (2)0.0247 (2)0.0129 (2)−0.00865 (19)−0.00619 (17)0.00187 (17)
V20.0192 (2)0.0173 (2)0.0117 (2)−0.00599 (18)−0.00523 (17)0.00065 (17)
V30.0121 (2)0.0199 (2)0.0120 (2)−0.00499 (17)−0.00582 (16)0.00196 (17)
V40.0136 (2)0.0184 (2)0.0109 (2)−0.00274 (17)−0.00571 (17)0.00037 (16)

Geometric parameters (Å, °)

C1—N11.333 (4)Cu1—N21.991 (2)
C1—C21.378 (4)Cu1—O12.252 (2)
C1—H10.94 (3)O1—V11.621 (2)
C2—C31.375 (5)O2—V41.763 (2)
C2—H20.91 (3)O2—V1i1.797 (2)
C3—C41.387 (4)O3—V41.6398 (19)
C3—H30.90 (3)O4—V31.661 (2)
C4—C51.379 (4)O5—V4ii1.7684 (6)
C4—H40.89 (3)O5—V41.7684 (6)
C5—N11.348 (3)O6—V21.588 (2)
C5—C61.477 (4)O7—V1iii1.7405 (19)
C6—N21.357 (3)O7—V31.8003 (19)
C6—C71.381 (4)O8—V11.686 (2)
C7—C81.379 (4)O8—V21.953 (2)
C7—H50.91 (3)O9—V41.6586 (19)
C8—C91.372 (4)O9—V21.9957 (19)
C8—H60.99 (3)O10—V31.6894 (19)
C9—C101.389 (4)O10—V21.936 (2)
C9—H70.89 (3)O11—V31.6840 (19)
C10—N21.340 (4)O11—V2iv1.9363 (19)
C10—H80.96 (3)V1—O7v1.7405 (19)
Cu1—O41.934 (2)V1—O2i1.797 (2)
Cu1—O31.957 (2)V2—O11iv1.9363 (19)
Cu1—N11.980 (2)
N1—C1—C2122.2 (3)C5—N1—Cu1114.58 (18)
N1—C1—H1116.7 (19)C10—N2—C6119.3 (2)
C2—C1—H1121.0 (19)C10—N2—Cu1126.54 (19)
C3—C2—C1118.9 (3)C6—N2—Cu1114.11 (18)
C3—C2—H2121 (2)V1—O1—Cu1136.75 (11)
C1—C2—H2120 (2)V4—O2—V1i142.02 (12)
C2—C3—C4119.2 (3)V4—O3—Cu1143.18 (12)
C2—C3—H3119 (2)V3—O4—Cu1156.12 (13)
C4—C3—H3121 (2)V4ii—O5—V4180.0
C5—C4—C3118.9 (3)V1iii—O7—V3166.30 (13)
C5—C4—H4120 (2)V1—O8—V2123.33 (11)
C3—C4—H4121 (2)V4—O9—V2154.58 (12)
N1—C5—C4121.5 (3)V3—O10—V2143.70 (12)
N1—C5—C6114.8 (2)V3—O11—V2iv153.85 (12)
C4—C5—C6123.7 (3)O1—V1—O8107.63 (11)
N2—C6—C7121.4 (3)O1—V1—O7v110.71 (11)
N2—C6—C5114.4 (2)O8—V1—O7v111.38 (10)
C7—C6—C5124.2 (3)O1—V1—O2i108.79 (10)
C8—C7—C6119.0 (3)O8—V1—O2i109.54 (10)
C8—C7—H5124 (2)O7v—V1—O2i108.75 (10)
C6—C7—H5117 (2)O6—V2—O11iv103.25 (10)
C9—C8—C7119.8 (3)O6—V2—O10107.76 (10)
C9—C8—H6122.7 (18)O11iv—V2—O1086.50 (9)
C7—C8—H6117.5 (18)O6—V2—O8107.90 (10)
C8—C9—C10119.0 (3)O11iv—V2—O887.79 (9)
C8—C9—H7119 (2)O10—V2—O8144.26 (9)
C10—C9—H7122 (2)O6—V2—O999.91 (10)
N2—C10—C9121.5 (3)O11iv—V2—O9156.82 (9)
N2—C10—H8116.0 (18)O10—V2—O985.62 (9)
C9—C10—H8122.4 (18)O8—V2—O985.96 (9)
O4—Cu1—O391.37 (9)O4—V3—O11110.09 (11)
O4—Cu1—N194.77 (10)O4—V3—O10110.01 (10)
O3—Cu1—N1170.15 (9)O11—V3—O10110.08 (10)
O4—Cu1—N2167.12 (9)O4—V3—O7110.49 (10)
O3—Cu1—N290.36 (9)O11—V3—O7108.55 (10)
N1—Cu1—N281.96 (10)O10—V3—O7107.58 (10)
O4—Cu1—O195.62 (9)O3—V4—O9109.67 (10)
O3—Cu1—O190.80 (8)O3—V4—O2111.30 (10)
N1—Cu1—O196.24 (9)O9—V4—O2107.76 (10)
N2—Cu1—O197.12 (9)O3—V4—O5108.67 (8)
C1—N1—C5119.1 (2)O9—V4—O5111.12 (7)
C1—N1—Cu1126.2 (2)O2—V4—O5108.34 (7)

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+2, −z+1; (iii) x−1, y, z; (iv) −x, −y+2, −z+2; (v) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···O40.94 (3)2.53 (3)3.068 (4)117 (2)
C2—H2···O6iv0.91 (3)2.57 (3)3.132 (4)121 (2)
C4—H4···O10vi0.89 (3)2.53 (3)3.330 (4)150 (3)
C7—H5···O9vi0.91 (3)2.59 (3)3.306 (4)136 (3)
C9—H7···O6i0.89 (3)2.36 (3)3.216 (4)160 (3)
C10—H8···O30.96 (3)2.36 (3)2.937 (4)118 (2)

Symmetry codes: (iv) −x, −y+2, −z+2; (vi) x+1, y−1, z; (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2241).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Girginova, P. I., Paz, F. A. A., Nogueira, H. I. S., Silva, N. J. O., Amaral, V. S., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct.737, 221–225.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Liu, C.-M., Gao, S., Hu, H.-M. & Wang, Z.-M. (2001). Chem. Commun pp. 1636–1638. [PubMed]
  • Liu, C.-M., Hou, Y. L., Zhang, J. & Gao, S. (2002). Inorg. Chem 41, 140–144. [PubMed]
  • Paz, F. A. A. & Klinowski, J. (2003). Chem. Commun pp. 1484–1486.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, F.-N., Paz, F. A. A., Rocha, J., Klinowski, J. & Trindade, T. (2005). Inorg. Chim. Acta, 358, 927–931.
  • Yuan, M., Li, Y. G., Wang, E. B., Lu, Y., Hu, C. W., Hu, N. H. & Jia, H. Q. (2002). J. Chem. Soc., Dalton Trans pp. 2916–2920.
  • Zapf, P. J., Haushalter, R. C. & Zubieta, J. (1997). Chem. Commun pp. 321–323.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography