PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o78.
Published online 2009 December 9. doi:  10.1107/S1600536809049587
PMCID: PMC2980042

(2S,6S)-1-Methyl-2,6-trans-distyryl­piperidinium chloride

Abstract

In the crystal structure of the title compound, C22H26N+·Cl, the piperidine ring is in a chair conformation and the two styryl groups are in axial and equatorial positions. The mol­ecule has a hydrogen bond between the NH group and the chloride anion.

Related literature

The title compound is a des-oxygen derivative of epimerized (−)-lobeline (Zheng et al., 2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00o78-scheme1.jpg

Experimental

Crystal data

  • C22H26N+·Cl
  • M r = 339.89
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-00o78-efi1.jpg
  • a = 9.9355 (4) Å
  • b = 12.3075 (5) Å
  • c = 15.8299 (7) Å
  • V = 1935.70 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 173 K
  • 0.38 × 0.28 × 0.08 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997 [triangle]) T min = 0.930, T max = 0.984
  • 11921 measured reflections
  • 3416 independent reflections
  • 2957 reflections with I > 2σ(I)
  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.091
  • S = 1.11
  • 3416 reflections
  • 218 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.26 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1457 Friedel pairs
  • Flack parameter: 0.06 (7)

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in Siemens SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and local procedures.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809049587/hg2599sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049587/hg2599Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by National Institute of Health grants DA13519 and DA00399.

supplementary crystallographic information

Comment

The title compound is a des-oxygen derivative of epimerized (-)-lobeline (Zheng et al., 2005). The molecular structure is illustrated in Fig. 1. The piperidine ring of the molecule is in the chair conformation and the N-methyl group is bonded equatorially to the piperidine ring. The N atom has an axial H atom that is hydrogen bonded to the chloride anion (HN..Cl = 3.027 (2) Å). One styryl group is attached equatorially to the piperidine ring and the other styryl group is pseudo-axial, with C15—C2—N1 [111.67 (18)°] and C15—C2—C3 [113.7 (2)°] bond angles slightly different from the ideal 109.5°. The piperidine ring is not mirror symmetric, as indicated by unequal bond lengths and angles (Table 1). The double bond and phenyl ring of the styryl side chain are not coplanar, as evidenced by the C15—C16—C17—C18 and C7—C8—C9—C14 torsion angles, -165.4 (3)° and -169.0 (2)°, respectively.

Experimental

The title compound was prepared from (-)-lobeline (Zheng et al., 2005). Crystals suitable for X-ray diffraction studies were obtained by slow recrystallization from a solution in methanol and diethyl ether.

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 1.00 Å (R3CH), 0.95 Å (R2CH), 0.93 Å (N—H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom.

Figures

Fig. 1.
A view of the molecule. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C22H26N+·ClF(000) = 728
Mr = 339.89Dx = 1.166 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 21849 reflections
a = 9.9355 (4) Åθ = 1.0–27.5°
b = 12.3075 (5) ŵ = 0.20 mm1
c = 15.8299 (7) ÅT = 173 K
V = 1935.70 (14) Å3Irregular plates, colourless
Z = 40.38 × 0.28 × 0.08 mm

Data collection

Nonius KappaCCD diffractometer3416 independent reflections
Radiation source: fine-focus sealed tube2957 reflections with I > 2σ(I)
graphiteRint = 0.065
Detector resolution: 18 pixels mm-1θmax = 25.0°, θmin = 2.1°
ω scans at fixed χ = 55°h = −11→11
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997)k = −14→14
Tmin = 0.930, Tmax = 0.984l = −18→18
11921 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.091w = 1/[σ2(Fo2) + (0.0332P)2 + 0.1721P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3416 reflectionsΔρmax = 0.45 e Å3
218 parametersΔρmin = −0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), 1457 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.06 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl0.49125 (6)1.13417 (4)0.35616 (4)0.03556 (19)
N10.44499 (17)0.82481 (15)0.25784 (13)0.0275 (5)
H10.46610.76430.22530.033*
C10.4017 (3)0.9121 (2)0.19752 (16)0.0358 (7)
H1A0.31440.89280.17290.054*
H1B0.46870.91920.15240.054*
H1C0.39380.98120.22780.054*
C20.3304 (2)0.79138 (19)0.31510 (17)0.0305 (6)
H20.25790.76070.27830.037*
C30.3774 (3)0.7007 (2)0.37336 (17)0.0372 (7)
H3A0.30350.68120.41250.045*
H3B0.39910.63560.33920.045*
C40.5004 (3)0.7336 (2)0.42414 (16)0.0395 (7)
H4A0.47800.79580.46120.047*
H4B0.52980.67240.46020.047*
C50.6127 (2)0.76520 (19)0.36400 (16)0.0331 (6)
H5A0.63900.70080.33040.040*
H5B0.69200.78840.39720.040*
C60.5726 (2)0.85631 (19)0.30435 (15)0.0272 (6)
H60.55450.92320.33830.033*
C70.6841 (2)0.87992 (19)0.24306 (15)0.0292 (6)
H70.70390.82830.20020.035*
C80.7558 (2)0.9709 (2)0.24688 (15)0.0283 (6)
H80.72601.02410.28610.034*
C90.8759 (2)0.9986 (2)0.19738 (15)0.0281 (6)
C100.9516 (2)1.0897 (2)0.22012 (17)0.0342 (7)
H100.92371.13270.26670.041*
C111.0659 (2)1.1182 (2)0.17623 (18)0.0391 (7)
H111.11641.18000.19320.047*
C121.1074 (3)1.0578 (2)0.10788 (17)0.0444 (8)
H121.18591.07800.07750.053*
C131.0347 (3)0.9682 (2)0.08396 (17)0.0460 (8)
H131.06290.92660.03660.055*
C140.9202 (3)0.9378 (2)0.12838 (17)0.0419 (7)
H140.87150.87500.11160.050*
C150.2714 (2)0.88730 (18)0.36100 (16)0.0278 (6)
H150.33000.93780.38750.033*
C160.1402 (2)0.90289 (19)0.36523 (17)0.0307 (6)
H160.08560.85200.33590.037*
C170.0685 (2)0.9906 (2)0.41046 (14)0.0257 (6)
C18−0.0696 (2)0.9803 (2)0.42416 (15)0.0312 (6)
H18−0.11470.91670.40540.037*
C19−0.1417 (3)1.0608 (2)0.46452 (16)0.0383 (7)
H19−0.23591.05270.47290.046*
C20−0.0774 (3)1.1519 (2)0.49227 (17)0.0390 (7)
H20−0.12691.20710.52040.047*
C210.0595 (3)1.1644 (2)0.47978 (16)0.0342 (7)
H210.10371.22780.49980.041*
C220.1322 (3)1.0848 (2)0.43814 (15)0.0290 (6)
H220.22581.09450.42840.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.0428 (4)0.0231 (3)0.0408 (4)−0.0033 (3)0.0079 (3)−0.0019 (3)
N10.0250 (11)0.0208 (11)0.0369 (12)0.0017 (9)0.0023 (10)−0.0077 (10)
C10.0337 (16)0.0357 (15)0.0379 (16)0.0067 (13)−0.0034 (13)−0.0001 (14)
C20.0190 (14)0.0247 (14)0.0478 (16)−0.0070 (11)0.0024 (13)−0.0055 (13)
C30.0334 (16)0.0283 (15)0.0500 (18)−0.0045 (12)0.0089 (14)0.0034 (14)
C40.0414 (16)0.0329 (14)0.0442 (17)0.0019 (15)0.0055 (16)0.0147 (13)
C50.0243 (14)0.0306 (15)0.0445 (17)0.0002 (12)−0.0047 (13)0.0062 (14)
C60.0194 (13)0.0244 (14)0.0377 (15)−0.0057 (12)−0.0040 (12)−0.0056 (13)
C70.0256 (13)0.0319 (15)0.0301 (15)0.0050 (13)−0.0009 (12)−0.0023 (13)
C80.0236 (14)0.0294 (15)0.0319 (15)0.0007 (12)−0.0023 (12)−0.0012 (13)
C90.0218 (14)0.0360 (16)0.0264 (14)0.0004 (12)−0.0029 (12)0.0050 (13)
C100.0288 (15)0.0325 (15)0.0412 (16)0.0026 (12)−0.0026 (13)0.0033 (13)
C110.0294 (15)0.0356 (17)0.0523 (19)−0.0086 (13)−0.0001 (14)0.0098 (16)
C120.0300 (16)0.061 (2)0.0427 (18)−0.0069 (16)0.0042 (14)0.0142 (16)
C130.0379 (18)0.066 (2)0.0339 (17)−0.0039 (16)0.0074 (14)−0.0072 (15)
C140.0347 (16)0.0530 (18)0.0380 (18)−0.0100 (14)−0.0044 (14)−0.0036 (16)
C150.0241 (14)0.0235 (14)0.0359 (15)−0.0025 (11)0.0007 (12)−0.0038 (12)
C160.0280 (15)0.0262 (14)0.0379 (15)−0.0046 (11)−0.0065 (13)−0.0035 (13)
C170.0231 (14)0.0276 (15)0.0265 (14)0.0052 (12)−0.0040 (11)0.0030 (12)
C180.0238 (15)0.0347 (16)0.0350 (15)−0.0033 (13)−0.0051 (12)−0.0003 (13)
C190.0237 (15)0.0502 (19)0.0410 (18)0.0055 (14)0.0035 (13)−0.0038 (15)
C200.0382 (18)0.0449 (19)0.0338 (16)0.0115 (15)0.0034 (13)−0.0065 (15)
C210.0378 (17)0.0297 (17)0.0352 (16)−0.0010 (13)0.0011 (13)−0.0052 (13)
C220.0224 (14)0.0335 (15)0.0311 (15)−0.0016 (12)0.0019 (12)0.0009 (13)

Geometric parameters (Å, °)

N1—C11.500 (3)C9—C101.397 (3)
N1—C21.512 (3)C10—C111.377 (3)
N1—C61.517 (3)C10—H100.9500
N1—H10.9300C11—C121.376 (3)
C1—H1A0.9800C11—H110.9500
C1—H1B0.9800C12—C131.371 (4)
C1—H1C0.9800C12—H120.9500
C2—C151.505 (3)C13—C141.389 (3)
C2—C31.522 (3)C13—H130.9500
C2—H21.0000C14—H140.9500
C3—C41.518 (3)C15—C161.320 (3)
C3—H3A0.9900C15—H150.9500
C3—H3B0.9900C16—C171.478 (3)
C4—C51.517 (3)C16—H160.9500
C4—H4A0.9900C17—C221.392 (3)
C4—H4B0.9900C17—C181.394 (3)
C5—C61.519 (3)C18—C191.380 (3)
C5—H5A0.9900C18—H180.9500
C5—H5B0.9900C19—C201.363 (4)
C6—C71.501 (3)C19—H190.9500
C6—H61.0000C20—C211.383 (3)
C7—C81.329 (3)C20—H200.9500
C7—H70.9500C21—C221.384 (3)
C8—C91.468 (3)C21—H210.9500
C8—H80.9500C22—H220.9500
C9—C141.395 (3)
C1—N1—C2111.13 (18)C7—C8—C9127.4 (2)
C1—N1—C6111.45 (18)C7—C8—H8116.3
C2—N1—C6114.09 (19)C9—C8—H8116.3
C1—N1—H1106.5C14—C9—C10117.5 (2)
C2—N1—H1106.5C14—C9—C8123.4 (2)
C6—N1—H1106.5C10—C9—C8119.1 (2)
N1—C1—H1A109.5C11—C10—C9121.2 (3)
N1—C1—H1B109.5C11—C10—H10119.4
H1A—C1—H1B109.5C9—C10—H10119.4
N1—C1—H1C109.5C12—C11—C10120.4 (3)
H1A—C1—H1C109.5C12—C11—H11119.8
H1B—C1—H1C109.5C10—C11—H11119.8
C15—C2—N1111.67 (18)C13—C12—C11119.6 (3)
C15—C2—C3113.7 (2)C13—C12—H12120.2
N1—C2—C3109.39 (19)C11—C12—H12120.2
C15—C2—H2107.2C12—C13—C14120.6 (3)
N1—C2—H2107.2C12—C13—H13119.7
C3—C2—H2107.2C14—C13—H13119.7
C4—C3—C2111.81 (19)C13—C14—C9120.7 (3)
C4—C3—H3A109.3C13—C14—H14119.7
C2—C3—H3A109.3C9—C14—H14119.7
C4—C3—H3B109.3C16—C15—C2121.6 (2)
C2—C3—H3B109.3C16—C15—H15119.2
H3A—C3—H3B107.9C2—C15—H15119.2
C5—C4—C3109.2 (2)C15—C16—C17127.4 (2)
C5—C4—H4A109.8C15—C16—H16116.3
C3—C4—H4A109.8C17—C16—H16116.3
C5—C4—H4B109.8C22—C17—C18118.3 (2)
C3—C4—H4B109.8C22—C17—C16122.8 (2)
H4A—C4—H4B108.3C18—C17—C16118.9 (2)
C4—C5—C6112.74 (19)C19—C18—C17121.2 (3)
C4—C5—H5A109.0C19—C18—H18119.4
C6—C5—H5A109.0C17—C18—H18119.4
C4—C5—H5B109.0C20—C19—C18119.7 (2)
C6—C5—H5B109.0C20—C19—H19120.1
H5A—C5—H5B107.8C18—C19—H19120.1
C7—C6—N1110.65 (18)C19—C20—C21120.5 (3)
C7—C6—C5110.60 (19)C19—C20—H20119.8
N1—C6—C5109.39 (19)C21—C20—H20119.8
C7—C6—H6108.7C20—C21—C22120.2 (3)
N1—C6—H6108.7C20—C21—H21119.9
C5—C6—H6108.7C22—C21—H21119.9
C8—C7—C6122.0 (2)C21—C22—C17120.1 (2)
C8—C7—H7119.0C21—C22—H22119.9
C6—C7—H7119.0C17—C22—H22119.9
C1—N1—C2—C15−54.9 (3)C8—C9—C10—C11179.3 (2)
C6—N1—C2—C1572.2 (2)C9—C10—C11—C120.7 (4)
C1—N1—C2—C3178.35 (18)C10—C11—C12—C13−0.4 (4)
C6—N1—C2—C3−54.6 (3)C11—C12—C13—C14−0.4 (4)
C15—C2—C3—C4−69.2 (3)C12—C13—C14—C90.9 (4)
N1—C2—C3—C456.4 (3)C10—C9—C14—C13−0.6 (4)
C2—C3—C4—C5−58.0 (3)C8—C9—C14—C13180.0 (2)
C3—C4—C5—C657.4 (3)N1—C2—C15—C16133.2 (3)
C1—N1—C6—C7−57.5 (2)C3—C2—C15—C16−102.5 (3)
C2—N1—C6—C7175.62 (18)C2—C15—C16—C17177.6 (2)
C1—N1—C6—C5−179.60 (19)C15—C16—C17—C2216.4 (4)
C2—N1—C6—C553.5 (2)C15—C16—C17—C18−165.4 (3)
C4—C5—C6—C7−176.7 (2)C22—C17—C18—C19−0.4 (4)
C4—C5—C6—N1−54.6 (3)C16—C17—C18—C19−178.7 (2)
N1—C6—C7—C8129.0 (2)C17—C18—C19—C20−0.5 (4)
C5—C6—C7—C8−109.6 (3)C18—C19—C20—C210.4 (4)
C6—C7—C8—C9172.7 (2)C19—C20—C21—C220.6 (4)
C7—C8—C9—C1410.4 (4)C20—C21—C22—C17−1.5 (4)
C7—C8—C9—C10−169.0 (2)C18—C17—C22—C211.4 (4)
C14—C9—C10—C11−0.2 (3)C16—C17—C22—C21179.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···Cli0.932.103.027 (2)176

Symmetry codes: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2599).

References

  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zheng, G., Dwoskin, L. P., Deaciuc, A. G., Norrholm, S. D. & Crooks, P. A. (2005). J. Med. Chem. pp. 5551–5560. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography