PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o17.
Published online 2009 December 4. doi:  10.1107/S1600536809051125
PMCID: PMC2980039

8-Methyl-4-phenyl-2,3,3a,4,5,9b-hexa­hydro­furo[3,2-c]quinoline

Abstract

The title compound, C18H19NO, was synthesized from the multi-component one-pot reaction between p-toluidine, benzaldehyde and 2,3-dihydro­furan in the presence of palladium dichloride. There are two mol­ecules in the asymmetric unit. The crystal packing is stabilized by classical inter­molecular N—H(...)O hydrogen bonds.

Related literature

For heterocyclic scaffolds of biologically active alkaloids, see: Johnson et al. (1989 [triangle]); Yamada et al. (1992 [triangle]); Katritzky & Rachwal (1996 [triangle]). For the synthesis of related compounds, see: Buonora et al. (2001 [triangle]); Syamala (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00o17-scheme1.jpg

Experimental

Crystal data

  • C18H19NO
  • M r = 265.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00o17-efi1.jpg
  • a = 12.751 (4) Å
  • b = 17.780 (5) Å
  • c = 17.516 (4) Å
  • β = 132.426 (14)°
  • V = 2931.3 (15) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 295 K
  • 0.30 × 0.15 × 0.15 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.987, T max = 0.989
  • 14911 measured reflections
  • 5280 independent reflections
  • 2114 reflections with I > 2σ(I)
  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069
  • wR(F 2) = 0.186
  • S = 1.17
  • 5280 reflections
  • 315 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051125/rk2180sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051125/rk2180Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank South China Normal University for financial support (grant Nos. SCNU033038 and SCNU524002).

supplementary crystallographic information

Comment

Tetrahydroquinolines are well known as important heterocyclic scaffolds in many biologically active alkaloids, examples including flindersine, oricine and verprisine (Johnson et al., 1989; Katritzky & Rachwal, 1996; Yamada et al., 1992). Aza Diels-Alder reaction which a one-pot condensation of aryl amine, aromatic aldehydes and 2,3-dihydrofuran or 3,4-dihydro-2H-pyran is a wellestablished method used for the construction of tetrahydroquinolines (Buonora et al., 2001; Syamala, 2005). The reaction between p-toluidine, benzaldehyde and 2,3-dihydrofuran in the presence of palladium dichloride proceeded to give the title compound in isolated yield 92.6% (Fig. 1). A representation of the title compound is given in Fig. 2. There are no unusual bond lengths and angles in the compound and the trans- and cis-conformations were both formed in the reaction. The compound contains two different size rings: the tetrahydropyranoquinoline ring connected a phenyl ring, the structure about two rings connected each other via C12–C13 and C30–C31 bonds. In addition, the molecules in the structure are linked via intermolecular hydrogen bonds N1–H1···O2 and N2–H2···O1i. Symmetry code: (i) -x+1, y-1/2, -z+1/2.

Experimental

A mixture of p-toluidine (1.07 g, 10 mmol), benzaldehyde (1.06 g, 10 mmol), 2,3-dihydrofuran (0.84 g, 12 mmol), and palladium dichloride (0.0020 mg) was refluxed in acetonitrile (12 ml) at 373 K for 10 h. After being cooled to room temperature, the reaction mixture was poured into water. The white precipitate was filtered off with a silica pad, washed twice with water, and the filtrate was then dried under vacuum. Yield 92.6%. Single crystals of the title compound were obtained by slow evaporation from ethanol at room temperature to yield colourless, block-shaped crystal.

Refinement

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C–H = 0.93-0.98Å and N–H = 0.86Å, respectively, and Uiso = 1.2 or 1.5Ueq(parent atom).

Figures

Fig. 1.
Palladium dichloride catalyzed synthesis of the title compound.
Fig. 2.
View of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Crystal data

C18H19NOF(000) = 1136
Mr = 265.34Dx = 1.202 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1233 reflections
a = 12.751 (4) Åθ = 2.3–18.3°
b = 17.780 (5) ŵ = 0.07 mm1
c = 17.516 (4) ÅT = 295 K
β = 132.426 (14)°Block, colourless
V = 2931.3 (15) Å30.30 × 0.15 × 0.15 mm
Z = 8

Data collection

Bruker APEXII area-detector diffractometer5280 independent reflections
Radiation source: fine-focus sealed tube2114 reflections with I > 2σ(I)
graphiteRint = 0.067
[var phi] and ω scansθmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −15→13
Tmin = 0.987, Tmax = 0.989k = −19→21
14911 measured reflectionsl = −19→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.17w = 1/[σ2(Fo2) + (0.045P)2 + 0.45P] where P = (Fo2 + 2Fc2)/3
5280 reflections(Δ/σ)max < 0.001
315 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All s.u.'s (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.6400 (3)0.92041 (17)0.1751 (2)0.0704 (9)
H10.68050.89390.16010.084*
C10.8237 (5)1.2230 (2)0.3116 (3)0.1063 (16)
H1A0.82471.24830.26370.159*
H1B0.91771.22300.37900.159*
H1C0.76001.24850.31440.159*
C20.7734 (4)1.14134 (12)0.2756 (2)0.0783 (12)
C30.8651 (2)1.08924 (18)0.28789 (19)0.0806 (12)
H30.95581.10380.31750.097*
C40.8212 (3)1.01531 (16)0.2559 (2)0.0746 (11)
H40.88250.98040.26410.090*
C50.6856 (3)0.99347 (11)0.2116 (2)0.0636 (10)
C60.5939 (2)1.04557 (16)0.19939 (19)0.0698 (11)
C70.6378 (3)1.11950 (14)0.2314 (2)0.0787 (12)
H70.57651.15440.22320.094*
O10.3443 (3)1.07237 (16)0.0794 (3)0.1021 (10)
C80.4479 (5)1.0230 (2)0.1582 (3)0.0808 (12)
H80.44821.02360.21430.097*
C90.4029 (4)0.9456 (2)0.1070 (3)0.0746 (11)
H90.33050.92550.10610.090*
C100.3334 (5)0.9635 (2)−0.0018 (3)0.0834 (12)
H10A0.25700.9284−0.05010.100*
H10B0.40170.9616−0.00970.100*
C110.2772 (5)1.0417 (3)−0.0188 (4)0.1070 (15)
H11A0.29801.0721−0.05320.128*
H11B0.17501.0405−0.06180.128*
C120.5249 (4)0.8892 (2)0.1623 (3)0.0691 (11)
H120.55980.88100.23150.083*
C130.4766 (3)0.81442 (12)0.10806 (19)0.0670 (10)
C140.4233 (3)0.76150 (17)0.13274 (19)0.0819 (12)
H140.42250.77170.18440.098*
C150.3711 (3)0.69334 (14)0.0802 (2)0.0932 (14)
H150.33540.65790.09670.112*
C160.3723 (3)0.67811 (13)0.0029 (2)0.0945 (14)
H160.33740.6325−0.03220.113*
C170.4257 (3)0.73103 (17)−0.02174 (18)0.0928 (14)
H170.42650.7208−0.07340.111*
C180.4778 (3)0.79919 (15)0.0308 (2)0.0805 (12)
H180.51350.83460.01430.097*
O20.8981 (3)0.82604 (14)0.2907 (2)0.0841 (8)
N20.7998 (3)0.68166 (16)0.3925 (2)0.0739 (9)
H20.78920.64420.41790.089*
C190.7740 (5)0.9864 (2)0.4799 (4)0.1011 (15)
H19A0.79760.99030.54470.152*
H19B0.67871.00400.42520.152*
H19C0.83871.01640.48230.152*
C200.7851 (3)0.90401 (11)0.46008 (18)0.0713 (11)
C210.7154 (3)0.84833 (16)0.46715 (19)0.0805 (12)
H210.66480.86090.48610.097*
C220.7215 (3)0.77394 (14)0.4459 (2)0.0766 (12)
H220.67490.73670.45070.092*
C230.7971 (3)0.75522 (10)0.41766 (18)0.0646 (10)
C240.8668 (2)0.81089 (14)0.41060 (18)0.0607 (10)
C250.8607 (2)0.88529 (12)0.43181 (19)0.0695 (11)
H250.90730.92250.42710.083*
C260.9540 (4)0.7911 (2)0.3858 (3)0.0722 (11)
H261.05100.80940.44170.087*
C270.9609 (4)0.7077 (2)0.3691 (3)0.0779 (12)
H271.03990.68370.43500.093*
C280.9901 (5)0.7086 (2)0.2974 (4)0.1086 (16)
H28A1.08940.69830.33590.130*
H28B0.93240.67130.24310.130*
C290.9512 (6)0.7860 (3)0.2531 (4)0.1208 (19)
H29A1.03410.81140.27330.145*
H29B0.87960.78360.17820.145*
C300.8210 (4)0.67054 (19)0.3224 (3)0.0657 (10)
H300.74510.69770.25860.079*
C310.8059 (4)0.58845 (13)0.2948 (3)0.0754 (12)
C320.6928 (3)0.56536 (18)0.1940 (2)0.1154 (18)
H320.62920.60070.14360.138*
C330.6748 (4)0.4895 (2)0.1684 (3)0.140 (2)
H330.59920.47410.10090.168*
C340.7699 (5)0.43679 (13)0.2437 (4)0.1257 (19)
H340.75790.38610.22660.151*
C350.8830 (4)0.45988 (17)0.3446 (3)0.133 (2)
H350.94660.42460.39500.159*
C360.9010 (3)0.5357 (2)0.3702 (2)0.1198 (18)
H360.97660.55110.43770.144*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C230.066 (3)0.060 (3)0.070 (3)0.000 (2)0.047 (2)0.002 (2)
C240.058 (3)0.059 (2)0.063 (2)−0.0010 (19)0.040 (2)0.0028 (19)
C250.073 (3)0.066 (3)0.071 (3)−0.006 (2)0.049 (2)−0.002 (2)
C200.075 (3)0.065 (3)0.065 (3)−0.004 (2)0.044 (2)−0.010 (2)
C210.092 (3)0.085 (3)0.079 (3)−0.002 (2)0.063 (3)−0.010 (2)
C220.085 (3)0.078 (3)0.088 (3)−0.010 (2)0.066 (3)−0.006 (2)
C50.066 (3)0.063 (3)0.054 (2)0.005 (2)0.037 (2)0.004 (2)
C60.075 (3)0.064 (3)0.065 (3)−0.004 (2)0.045 (3)−0.004 (2)
C70.087 (3)0.073 (3)0.076 (3)0.000 (2)0.055 (3)−0.007 (2)
C20.107 (4)0.066 (3)0.064 (3)−0.010 (3)0.058 (3)0.003 (2)
C30.081 (3)0.086 (3)0.072 (3)−0.007 (3)0.051 (3)0.011 (2)
C40.071 (3)0.077 (3)0.078 (3)0.000 (2)0.051 (3)0.009 (2)
C130.059 (3)0.072 (3)0.058 (3)0.004 (2)0.035 (2)−0.006 (2)
C140.088 (3)0.074 (3)0.084 (3)−0.004 (2)0.058 (3)−0.003 (2)
C150.112 (4)0.070 (3)0.093 (3)−0.009 (3)0.067 (3)−0.004 (3)
C160.099 (4)0.074 (3)0.088 (4)−0.004 (2)0.054 (3)−0.014 (3)
C170.106 (4)0.086 (3)0.080 (3)0.001 (3)0.060 (3)−0.015 (3)
C180.097 (3)0.076 (3)0.077 (3)−0.007 (2)0.062 (3)−0.010 (2)
C310.086 (3)0.065 (3)0.086 (3)0.011 (2)0.062 (3)0.004 (2)
C360.127 (4)0.068 (3)0.105 (4)0.022 (3)0.054 (4)0.006 (3)
C350.156 (5)0.082 (4)0.130 (5)0.027 (3)0.084 (5)0.011 (3)
C340.161 (6)0.071 (3)0.148 (5)0.016 (4)0.105 (5)−0.012 (4)
C330.163 (6)0.091 (4)0.111 (5)0.001 (4)0.070 (4)−0.029 (4)
C320.131 (5)0.085 (4)0.090 (4)0.021 (3)0.058 (4)−0.012 (3)
O10.100 (2)0.084 (2)0.111 (3)0.0195 (18)0.067 (2)−0.007 (2)
N10.078 (2)0.068 (2)0.080 (2)−0.0036 (17)0.060 (2)−0.0116 (17)
C10.131 (4)0.080 (3)0.096 (4)−0.023 (3)0.072 (3)−0.002 (3)
C80.090 (4)0.074 (3)0.076 (3)0.002 (3)0.055 (3)−0.001 (3)
C90.081 (3)0.076 (3)0.079 (3)−0.003 (2)0.059 (3)−0.003 (2)
C100.105 (3)0.068 (3)0.082 (3)0.010 (2)0.065 (3)0.001 (2)
C110.119 (4)0.093 (4)0.100 (4)0.006 (3)0.070 (4)0.002 (3)
C120.072 (3)0.066 (3)0.069 (3)0.001 (2)0.047 (2)−0.002 (2)
O20.101 (2)0.0803 (19)0.106 (2)0.0212 (15)0.084 (2)0.0236 (17)
N20.099 (3)0.058 (2)0.089 (2)−0.0049 (17)0.074 (2)−0.0011 (18)
C190.124 (4)0.081 (3)0.111 (4)0.007 (3)0.085 (3)−0.010 (3)
C260.069 (3)0.067 (3)0.086 (3)0.002 (2)0.054 (3)0.005 (2)
C270.073 (3)0.075 (3)0.088 (3)0.012 (2)0.056 (3)0.012 (2)
C280.135 (4)0.091 (4)0.162 (5)0.015 (3)0.126 (4)0.006 (3)
C290.169 (5)0.113 (4)0.159 (5)0.049 (4)0.142 (5)0.037 (4)
C300.069 (3)0.061 (2)0.070 (3)0.007 (2)0.048 (2)0.000 (2)

Geometric parameters (Å, °)

C23—N21.388 (3)C35—H350.9300
C23—C241.3900C34—C331.3900
C23—C221.3900C34—H340.9300
C24—C251.3900C33—C321.3900
C24—C261.484 (4)C33—H330.9300
C25—C201.3900C32—H320.9300
C25—H250.9300O1—C81.400 (4)
C20—C211.3900O1—C111.415 (5)
C20—C191.534 (4)N1—C121.438 (4)
C21—C221.3900N1—H10.8600
C21—H210.9300C1—H1A0.9600
C22—H220.9300C1—H1B0.9600
C5—C61.3900C1—H1C0.9600
C5—C41.3900C8—C91.526 (5)
C5—N11.391 (3)C8—H80.9800
C6—C71.3900C9—C101.497 (5)
C6—C81.528 (5)C9—C121.527 (5)
C7—C21.3900C9—H90.9800
C7—H70.9300C10—C111.500 (5)
C2—C31.3900C10—H10A0.9700
C2—C11.539 (4)C10—H10B0.9700
C3—C41.3900C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—H40.9300C12—H120.9800
C13—C141.3900O2—C291.415 (9)
C13—C181.3900O2—C261.438 (4)
C13—C121.504 (4)N2—C301.438 (4)
C14—C151.3900N2—H20.8599
C14—H140.9300C19—H19A0.9600
C15—C161.3900C19—H19B0.9600
C15—H150.9300C19—H19C0.9600
C16—C171.3900C26—C271.525 (5)
C16—H160.9300C26—H260.9800
C17—C181.3900C27—C301.522 (5)
C17—H170.9300C27—C281.532 (5)
C18—H180.9300C27—H270.9800
C31—C361.3900C28—C291.491 (5)
C31—C321.3900C28—H28A0.9700
C31—C301.508 (4)C28—H28B0.9700
C36—C351.3900C29—H29A0.9700
C36—H360.9300C29—H29B0.9700
C35—C341.3900C30—H300.9800
N2—C23—C24119.3 (2)C2—C1—H1A109.5
N2—C23—C22120.7 (2)C2—C1—H1B109.5
C24—C23—C22120.0H1A—C1—H1B109.5
C25—C24—C23120.0C2—C1—H1C109.5
C25—C24—C26119.5 (2)H1A—C1—H1C109.5
C23—C24—C26120.5 (2)H1B—C1—H1C109.5
C24—C25—C20120.0O1—C8—C9104.8 (3)
C24—C25—H25120.0O1—C8—C6109.8 (3)
C20—C25—H25120.0C9—C8—C6111.7 (3)
C21—C20—C25120.0O1—C8—H8110.1
C21—C20—C19119.9 (2)C9—C8—H8110.1
C25—C20—C19120.1 (2)C6—C8—H8110.1
C20—C21—C22120.0C10—C9—C8102.8 (3)
C20—C21—H21120.0C10—C9—C12114.9 (3)
C22—C21—H21120.0C8—C9—C12113.6 (3)
C21—C22—C23120.0C10—C9—H9108.4
C21—C22—H22120.0C8—C9—H9108.4
C23—C22—H22120.0C12—C9—H9108.4
C6—C5—C4120.0C9—C10—C11104.0 (3)
C6—C5—N1120.3 (2)C9—C10—H10A111.0
C4—C5—N1119.6 (2)C11—C10—H10A111.0
C5—C6—C7120.0C9—C10—H10B111.0
C5—C6—C8121.8 (2)C11—C10—H10B111.0
C7—C6—C8118.0 (2)H10A—C10—H10B109.0
C2—C7—C6120.0O1—C11—C10107.5 (4)
C2—C7—H7120.0O1—C11—H11A110.2
C6—C7—H7120.0C10—C11—H11A110.2
C7—C2—C3120.0O1—C11—H11B110.2
C7—C2—C1120.6 (3)C10—C11—H11B110.2
C3—C2—C1119.4 (3)H11A—C11—H11B108.5
C4—C3—C2120.0N1—C12—C13112.3 (3)
C4—C3—H3120.0N1—C12—C9109.9 (3)
C2—C3—H3120.0C13—C12—C9111.9 (3)
C3—C4—C5120.0N1—C12—H12107.5
C3—C4—H4120.0C13—C12—H12107.5
C5—C4—H4120.0C9—C12—H12107.5
C14—C13—C18120.0C29—O2—C26107.6 (3)
C14—C13—C12118.6 (2)C23—N2—C30117.3 (3)
C18—C13—C12121.3 (2)C23—N2—H2121.3
C15—C14—C13120.0C30—N2—H2121.3
C15—C14—H14120.0C20—C19—H19A109.5
C13—C14—H14120.0C20—C19—H19B109.5
C14—C15—C16120.0H19A—C19—H19B109.5
C14—C15—H15120.0C20—C19—H19C109.5
C16—C15—H15120.0H19A—C19—H19C109.5
C17—C16—C15120.0H19B—C19—H19C109.5
C17—C16—H16120.0O2—C26—C24110.7 (3)
C15—C16—H16120.0O2—C26—C27104.3 (3)
C16—C17—C18120.0C24—C26—C27116.0 (3)
C16—C17—H17120.0O2—C26—H26108.6
C18—C17—H17120.0C24—C26—H26108.6
C17—C18—C13120.0C27—C26—H26108.6
C17—C18—H18120.0C30—C27—C26109.1 (3)
C13—C18—H18120.0C30—C27—C28114.1 (4)
C36—C31—C32120.0C26—C27—C28102.9 (3)
C36—C31—C30120.5 (3)C30—C27—H27110.2
C32—C31—C30119.5 (3)C26—C27—H27110.2
C31—C36—C35120.0C28—C27—H27110.2
C31—C36—H36120.0C29—C28—C27104.9 (3)
C35—C36—H36120.0C29—C28—H28A110.8
C34—C35—C36120.0C27—C28—H28A110.8
C34—C35—H35120.0C29—C28—H28B110.8
C36—C35—H35120.0C27—C28—H28B110.8
C35—C34—C33120.0H28A—C28—H28B108.8
C35—C34—H34120.0O2—C29—C28108.5 (4)
C33—C34—H34120.0O2—C29—H29A110.0
C32—C33—C34120.0C28—C29—H29A110.0
C32—C33—H33120.0O2—C29—H29B110.0
C34—C33—H33120.0C28—C29—H29B110.0
C33—C32—C31120.0H29A—C29—H29B108.4
C33—C32—H32120.0N2—C30—C31110.4 (3)
C31—C32—H32120.0N2—C30—C27108.0 (3)
C8—O1—C11110.5 (3)C31—C30—C27116.2 (3)
C5—N1—C12119.9 (3)N2—C30—H30107.3
C5—N1—H1120.1C31—C30—H30107.3
C12—N1—H1120.1C27—C30—H30107.3
N2—C23—C24—C25177.6 (2)C7—C6—C8—O153.0 (4)
C22—C23—C24—C250.0C5—C6—C8—C9−15.4 (4)
N2—C23—C24—C26−5.5 (3)C7—C6—C8—C9168.8 (3)
C22—C23—C24—C26176.8 (3)O1—C8—C9—C1032.1 (4)
C23—C24—C25—C200.0C6—C8—C9—C10−86.8 (4)
C26—C24—C25—C20−176.9 (3)O1—C8—C9—C12157.0 (3)
C24—C25—C20—C210.0C6—C8—C9—C1238.1 (4)
C24—C25—C20—C19−177.9 (3)C8—C9—C10—C11−28.3 (4)
C25—C20—C21—C220.0C12—C9—C10—C11−152.3 (4)
C19—C20—C21—C22177.9 (3)C8—O1—C11—C105.3 (5)
C20—C21—C22—C230.0C9—C10—C11—O115.4 (5)
N2—C23—C22—C21−177.6 (2)C5—N1—C12—C13171.8 (3)
C24—C23—C22—C210.0C5—N1—C12—C946.5 (4)
C4—C5—C6—C70.0C14—C13—C12—N1148.6 (2)
N1—C5—C6—C7−176.7 (3)C18—C13—C12—N1−34.7 (4)
C4—C5—C6—C8−175.7 (3)C14—C13—C12—C9−87.2 (3)
N1—C5—C6—C87.6 (3)C18—C13—C12—C989.4 (3)
C5—C6—C7—C20.0C10—C9—C12—N164.8 (4)
C8—C6—C7—C2175.8 (3)C8—C9—C12—N1−53.2 (4)
C6—C7—C2—C30.0C10—C9—C12—C13−60.6 (4)
C6—C7—C2—C1−179.9 (3)C8—C9—C12—C13−178.7 (3)
C7—C2—C3—C40.0C24—C23—N2—C30−25.0 (4)
C1—C2—C3—C4179.9 (3)C22—C23—N2—C30152.6 (2)
C2—C3—C4—C50.0C29—O2—C26—C24−160.0 (3)
C6—C5—C4—C30.0C29—O2—C26—C27−34.6 (4)
N1—C5—C4—C3176.8 (3)C25—C24—C26—O2−64.7 (3)
C18—C13—C14—C150.0C23—C24—C26—O2118.5 (3)
C12—C13—C14—C15176.7 (3)C25—C24—C26—C27176.9 (3)
C13—C14—C15—C160.0C23—C24—C26—C270.1 (4)
C14—C15—C16—C170.0O2—C26—C27—C30−89.9 (4)
C15—C16—C17—C180.0C24—C26—C27—C3032.0 (5)
C16—C17—C18—C130.0O2—C26—C27—C2831.6 (4)
C14—C13—C18—C170.0C24—C26—C27—C28153.5 (4)
C12—C13—C18—C17−176.6 (3)C30—C27—C28—C29100.3 (4)
C32—C31—C36—C350.0C26—C27—C28—C29−17.7 (5)
C30—C31—C36—C35177.7 (3)C26—O2—C29—C2823.5 (5)
C31—C36—C35—C340.0C27—C28—C29—O2−2.5 (6)
C36—C35—C34—C330.0C23—N2—C30—C31−174.1 (3)
C35—C34—C33—C320.0C23—N2—C30—C2757.8 (4)
C34—C33—C32—C310.0C36—C31—C30—N2−64.4 (3)
C36—C31—C32—C330.0C32—C31—C30—N2113.3 (3)
C30—C31—C32—C33−177.7 (3)C36—C31—C30—C2759.0 (4)
C6—C5—N1—C12−24.4 (4)C32—C31—C30—C27−123.2 (3)
C4—C5—N1—C12158.8 (3)C26—C27—C30—N2−58.8 (4)
C11—O1—C8—C9−23.5 (5)C28—C27—C30—N2−173.2 (3)
C11—O1—C8—C696.6 (4)C26—C27—C30—C31176.5 (3)
C5—C6—C8—O1−131.3 (3)C28—C27—C30—C3162.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.412.959 (4)122
N2—H2···O1i0.862.152.934 (4)151

Symmetry codes: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2180).

References

  • Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Buonora, P., Olsen, J.-C. & Oh, T. (2001). Tetrahedron, 57, 6099–6138.
  • Johnson, J. V., Rauckman, S., Baccanari, P. D. & Roth, B. (1989). J. Med. Chem.32, 1942–1949. [PubMed]
  • Katritzky, A. R. & Rachwal, B. (1996). Tetrahedron, 52, 15031–15070.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Syamala, M. (2005). Org. Prep. Proced. Int.37, 103–171.
  • Yamada, N., Kadowaki, S., Takahashi, K. & Umezu, K. (1992). Biochem. Pharmacol.44, 1211–1213. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography