PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o136.
Published online 2009 December 12. doi:  10.1107/S1600536809053069
PMCID: PMC2980036

2-Methyl-5-nitro­benzene­sulfonamide

Abstract

In the title compound, C7H8N2O4S, the nitro group is twisted by 9.61 (2)° relative to the benzene ring. In the crystal, mol­ecules are linked by N—H(...)O and N—H(...)(O,O) hydrogen bonds between the amino and sulfonyl groups, forming layers parallel to (001).

Related literature

For the biological activity of sulfonamides, see: Ozbek et al. (2007 [triangle]); Parari et al. (2008 [triangle]); Ratish et al. (2009 [triangle]); Selnam et al. (2001 [triangle]). For related structures, see: Arshad et al. (2009 [triangle]); Gowda et al. (2007a [triangle],b [triangle],c [triangle]); Khan et al. (2009 [triangle]); Haider et al.(2009 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o136-scheme1.jpg

Experimental

Crystal data

  • C7H8N2O4S
  • M r = 216.21
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o136-efi5.jpg
  • a = 4.9872 (4) Å
  • b = 6.2814 (5) Å
  • c = 28.557 (2) Å
  • V = 894.60 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.35 mm−1
  • T = 296 K
  • 0.43 × 0.17 × 0.11 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.864, T max = 0.962
  • 5964 measured reflections
  • 2113 independent reflections
  • 1549 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.099
  • S = 0.89
  • 2112 reflections
  • 136 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.23 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 766 Friedel pairs
  • Flack parameter: −0.02 (11)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809053069/is2494sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053069/is2494Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to PCSIR Laboratories Complex, Lahore, Pakistan, for the provision of necessary chemicals and to the Higher Education Commission of Pakistan for its grant for the purchase of diffractometer.

supplementary crystallographic information

Comment

Sulfonamides are familiar for their anti-HIV (Selnam et al., 2001), anti-inflamatory (Ratish et al., 2009) and anti-microbial (Ozbek et al., 2007; Parari et al., 2008) activities. In continuation of our work regarding the synthesis of various sulfonamides (Arshad et al., 2009; Khan et al., 2009), structure of 2-methyl-5-nitrobenzenesulfonamide (I) has been determined. Bond lengths and bond angles of the title molecule (Fig. 1) are almost similar to those in the related molecules (Gowda et al., 2007a,b,c; Haider et al., 2009) and are within the normal ranges (Allen et al., 1987). Each molecule is linked to its adjacent ones through intermolecular N—H···O hydrogen bonds forming a chain along the a axis, while each chain is linked to its neighbouring chain running in opposite direction via intermolecular N—H···O═S hydrogen bonds (Table 1 and Fig. 2).

Experimental

A well ground mixture of 2-methyl-5-nitrobenzenesulfonyl chloride (2.36 g, 10.0 mmol) and ammonium carbonate (10.0 g) was heated in a china dish till the complete removal of typical smell of sulfonyl chloride. Contents were cooled and washed with water followed by crystallization from methanol.

Refinement

All H atoms were identified in a difference map and then were treated as riding (C—H = 0.93 or 0.97 Å), with Uiso(H) = 1.2Ueq(C). The reflection '0 0 2' affected by beamstop was removed during refinement.

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids at the 50% probability level.
Fig. 2.
Perspective view of the three-dimensional crystal packing showing intermolecular hydrogen-bonded interactions (dashed lines). [Symmetry codes: (i) -x + 1, y + 1/2, -z + 3/2; (ii) x + 1, y, z and (iii) -x + 2, y + 1/2, -z + 3/2]. H atoms not involved in ...

Crystal data

C7H8N2O4SF(000) = 448
Mr = 216.21Dx = 1.605 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1325 reflections
a = 4.9872 (4) Åθ = 2.9–25.4°
b = 6.2814 (5) ŵ = 0.35 mm1
c = 28.557 (2) ÅT = 296 K
V = 894.60 (12) Å3Needles, colourless
Z = 40.43 × 0.17 × 0.11 mm

Data collection

Bruker APEXII CCD area-detector diffractometer2113 independent reflections
Radiation source: fine-focus sealed tube1549 reflections with I > 2σ(I)
graphiteRint = 0.036
[var phi] and ω scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −3→6
Tmin = 0.864, Tmax = 0.962k = −8→8
5964 measured reflectionsl = −38→38

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099w = 1/[σ2(Fo2) + (0.0508P)2 + 0.1986P] where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
2112 reflectionsΔρmax = 0.23 e Å3
136 parametersΔρmin = −0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 766 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.02 (11)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7436 (6)0.4718 (4)0.85981 (8)0.0294 (6)
C20.6274 (6)0.6621 (4)0.87573 (9)0.0336 (6)
C30.7125 (7)0.7374 (4)0.91916 (10)0.0433 (8)
H30.63920.86290.93080.052*
C40.9018 (6)0.6316 (5)0.94542 (9)0.0425 (7)
H40.95680.68570.97420.051*
C51.0083 (7)0.4455 (4)0.92867 (9)0.0342 (6)
C60.9298 (6)0.3616 (4)0.88605 (8)0.0330 (6)
H61.00090.23380.87530.040*
C70.4234 (7)0.7867 (5)0.84858 (11)0.0473 (9)
H7A0.38610.91780.86460.071*
H7B0.26150.70510.84590.071*
H7C0.49220.81710.81790.071*
N11.2116 (5)0.3335 (4)0.95582 (8)0.0431 (6)
O40.3903 (4)0.3752 (4)0.79524 (7)0.0525 (6)
O11.3007 (5)0.4194 (3)0.99090 (7)0.0568 (6)
O21.2851 (5)0.1593 (4)0.94205 (8)0.0677 (7)
O30.7986 (4)0.1599 (3)0.80208 (7)0.0465 (5)
N30.8152 (8)0.5117 (5)0.76612 (9)0.0532 (8)
S10.67301 (15)0.36352 (11)0.80358 (2)0.03595 (19)
H1N0.720 (8)0.605 (5)0.7540 (12)0.062 (12)*
H2N0.994 (12)0.509 (7)0.7660 (14)0.091 (16)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0257 (18)0.0334 (12)0.0292 (11)−0.0031 (12)0.0030 (11)0.0005 (10)
C20.0294 (18)0.0338 (13)0.0374 (12)−0.0008 (13)0.0030 (11)0.0044 (11)
C30.046 (2)0.0403 (14)0.0437 (15)0.0085 (15)0.0036 (15)−0.0086 (12)
C40.047 (2)0.0469 (15)0.0334 (12)0.0080 (17)−0.0022 (13)−0.0102 (13)
C50.0295 (18)0.0429 (14)0.0301 (12)0.0029 (13)0.0029 (12)0.0031 (11)
C60.0313 (17)0.0345 (12)0.0333 (12)0.0013 (14)0.0065 (11)−0.0029 (12)
C70.045 (2)0.0428 (16)0.0541 (17)0.0074 (15)0.0010 (16)0.0078 (13)
N10.0377 (16)0.0553 (14)0.0362 (11)0.0095 (15)−0.0022 (11)0.0052 (11)
O40.0291 (12)0.0768 (14)0.0515 (12)−0.0103 (12)−0.0018 (9)−0.0106 (11)
O10.0521 (16)0.0746 (15)0.0436 (11)0.0029 (13)−0.0166 (11)−0.0034 (10)
O20.0711 (19)0.0721 (14)0.0598 (14)0.0387 (16)−0.0127 (13)−0.0080 (12)
O30.0495 (14)0.0433 (10)0.0467 (10)−0.0050 (11)0.0040 (10)−0.0132 (9)
N30.039 (2)0.079 (2)0.0415 (13)−0.0008 (19)0.0032 (15)0.0203 (14)
S10.0296 (4)0.0473 (4)0.0310 (3)−0.0068 (4)0.0021 (3)−0.0038 (3)

Geometric parameters (Å, °)

C1—C61.379 (4)C6—H60.9300
C1—C21.404 (4)C7—H7A0.9600
C1—S11.779 (3)C7—H7B0.9600
C2—C31.393 (4)C7—H7C0.9600
C2—C71.499 (4)N1—O11.221 (3)
C3—C41.377 (4)N1—O21.219 (3)
C3—H30.9300O4—S11.432 (2)
C4—C51.370 (4)O3—S11.425 (2)
C4—H40.9300N3—S11.586 (3)
C5—C61.383 (3)N3—H1N0.83 (4)
C5—N11.457 (4)N3—H2N0.89 (6)
C6—C1—C2122.0 (2)C2—C7—H7A109.5
C6—C1—S1115.57 (19)C2—C7—H7B109.5
C2—C1—S1122.4 (2)H7A—C7—H7B109.5
C3—C2—C1116.8 (2)C2—C7—H7C109.5
C3—C2—C7119.3 (3)H7A—C7—H7C109.5
C1—C2—C7123.9 (2)H7B—C7—H7C109.5
C4—C3—C2122.0 (3)O1—N1—O2123.5 (3)
C4—C3—H3119.0O1—N1—C5118.5 (2)
C2—C3—H3119.0O2—N1—C5118.1 (2)
C5—C4—C3119.2 (3)S1—N3—H1N116 (3)
C5—C4—H4120.4S1—N3—H2N116 (3)
C3—C4—H4120.4H1N—N3—H2N126 (4)
C4—C5—C6121.5 (3)O3—S1—O4118.28 (15)
C4—C5—N1119.7 (2)O3—S1—N3108.08 (18)
C6—C5—N1118.8 (2)O4—S1—N3107.33 (18)
C1—C6—C5118.5 (2)O3—S1—C1106.47 (12)
C1—C6—H6120.7O4—S1—C1108.99 (13)
C5—C6—H6120.7N3—S1—C1107.21 (15)
C6—C1—C2—C31.2 (4)N1—C5—C6—C1−177.9 (2)
S1—C1—C2—C3−175.9 (2)C4—C5—N1—O1−6.9 (4)
C6—C1—C2—C7−179.7 (3)C6—C5—N1—O1172.3 (3)
S1—C1—C2—C73.3 (4)C4—C5—N1—O2173.7 (3)
C1—C2—C3—C40.1 (4)C6—C5—N1—O2−7.1 (4)
C7—C2—C3—C4−179.1 (3)C6—C1—S1—O39.8 (2)
C2—C3—C4—C5−0.6 (5)C2—C1—S1—O3−173.0 (2)
C3—C4—C5—C60.0 (4)C6—C1—S1—O4138.5 (2)
C3—C4—C5—N1179.2 (3)C2—C1—S1—O4−44.3 (3)
C2—C1—C6—C5−1.8 (4)C6—C1—S1—N3−105.7 (2)
S1—C1—C6—C5175.4 (2)C2—C1—S1—N371.6 (3)
C4—C5—C6—C11.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H1N···O4i0.83 (4)2.27 (4)3.055 (4)158 (3)
N3—H2N···O4ii0.89 (6)2.30 (6)3.107 (4)150 (4)
N3—H2N···O3iii0.89 (6)2.40 (4)2.893 (4)115 (3)

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1, y, z; (iii) −x+2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2494).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.
  • Arshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2009). Acta Cryst. E65, o1204. [PMC free article] [PubMed]
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.
  • Haider, Z., Khan, I. U., Zia-ur-Rehman, M. & Arshad, M. N. (2009). Acta Cryst. E65, o3053. [PMC free article] [PubMed]
  • Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867. [PMC free article] [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Ozbek, N., Katircioğ lu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem.15, 5105–5109. [PubMed]
  • Parari, M. K., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett.18, 776–781. [PubMed]
  • Ratish, G. I., Javed, K., Ahmad, S., Bano, S., Alam, M. S., Pillai, K. K., Singh, S. & Bagchi, V. (2009). Bioorg. Med. Chem. Lett.19, 255–258. [PubMed]
  • Selnam, P., Chandramohan, M., Clercq, E. D., Witvrouw, M. & Pannecouque, C. (2001). Eur. J. Pharm. Sci.14, 313–316. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography