PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o241.
Published online 2009 December 24. doi:  10.1107/S1600536809054841
PMCID: PMC2980035

(E)-4-Octyloxybenzaldehyde thio­semicarbazone

Abstract

In the title compound, C16H25N3OS, the thio­semicarbazone group adopts an E configuration with respect to the C=N bond and is almost coplanar with the benzene ring, forming a dihedral angle of 9.3 (1)°. In the crystal packing, the mol­ecules lie along the a axis in an anti­parallel arrangement and are held in place by van der Waals inter­actions. As a consequence, there is relatively low anisotropic thermal motion in the terminal atoms of the n-octyl chain.

Related literature

For the related structures, see: Basuli et al. (2000 [triangle]); Narayana et al. (2007 [triangle]); Pal et al. (2002 [triangle]); Tian et al. (2002 [triangle]); Tarafder et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o241-scheme1.jpg

Experimental

Crystal data

  • C16H25N3OS
  • M r = 307.45
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o241-efi1.jpg
  • a = 5.785 (2) Å
  • b = 7.586 (2) Å
  • c = 20.789 (4) Å
  • α = 94.74 (2)°
  • β = 91.85 (2)°
  • γ = 104.42 (3)°
  • V = 879.2 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.19 mm−1
  • T = 293 K
  • 0.42 × 0.40 × 0.14 mm

Data collection

  • Enraf–Nonius dip1030 image-plate diffractometer
  • 9930 measured reflections
  • 3226 independent reflections
  • 2749 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.140
  • S = 1.04
  • 3226 reflections
  • 191 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: XPRESS (MacScience, 2002 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809054841/fj2264sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054841/fj2264Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MAAAAI, MTHT and CMZ are grateful to Rajshahi University for the provision of laboratory facilities. MAAAAI thanks Rajshahi University of Engineering and Technology for sanctioning sabbatical leave and NG thanks MIUR, Rome (PRIN No. 2007HMTJWP_002) for a fellowship.

supplementary crystallographic information

Comment

When used in coordination chemistry this molecule is potentially a bidentate ligand acting through the α- or β-nitrogen and thiolate sulfur anion forming a four- and five-membered chelate ring, respectively (Pal et al., 2002), although a behavior as monocoordinated ligand through sulfur has also been reported (Tian et al., 2002). In the crystal structure the molecules are interconnected by N—H···N and N–H···S hydrogen bonds as found in other thiosemicarbazone species (Narayana et al., 2007; Tarafder et al., 2008). The crystal structure is also stabilized by C–H···π interactions. The octyl chain presents an anti conformation with the exception of the O1—C9—C10—C11 part that has a torsion angle of -72.7 (3)°.

Experimental

4-n-octyloxybenzaldehyde (6.09 g, 26 mmol) was added to a hot solution of thiosemicarbazide (2.38 g, 26 mmol) in methanol (200 ml). The mixture was refluxed for 30 min and cooled down to room temperature. The product was recrystallized from dichloromethane to give colorless microcrystals. M.P. 381 K. Brilliant colorless flat rectangular shaped crystals suitable for X-ray difraction were obtained from a mixture of dichloromethane and toluene (10:5; v/v) after 5 days.

Refinement

Data collection was performed on a image plate with a phi scan over 180° that allows to get a completion (for the triclinic space group) of 97%. All H atoms were located geometrically and treated as riding atoms, with C—H = 0.93–0.96 Å, N—H = 0.86 and with Uĩso~(H) = 1.2U~eq~(C or N) or 1.5U~eq~(C) for methyl H atoms.

Figures

Fig. 1.
ORTEP drawing (ellipsoids at the 40% probability level) of the compoud with atom-labelling scheme.

Crystal data

C16H25N3OSZ = 2
Mr = 307.45F(000) = 332
Triclinic, P1Dx = 1.161 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.785 (2) ÅCell parameters from 146 reflections
b = 7.586 (2) Åθ = 3.0–18.1°
c = 20.789 (4) ŵ = 0.19 mm1
α = 94.74 (2)°T = 293 K
β = 91.85 (2)°Plate, colorless
γ = 104.42 (3)°0.42 × 0.40 × 0.14 mm
V = 879.2 (4) Å3

Data collection

Enraf–Nonius dip1030 image-plate diffractometer2749 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
graphiteθmax = 25.7°, θmin = 3.6°
[var phi]–scans with narrow framesh = −7→7
9930 measured reflectionsk = −9→8
3226 independent reflectionsl = −25→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.1026P)2 + 0.0242P] where P = (Fo2 + 2Fc2)/3
3226 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S11.33919 (6)−0.29398 (5)0.99374 (2)0.06930 (19)
N11.0386 (2)0.02579 (17)0.89975 (6)0.0648 (3)
N21.1983 (2)−0.04336 (17)0.93483 (6)0.0690 (3)
H21.34350.02030.94210.083*
N30.9025 (2)−0.29670 (17)0.94909 (6)0.0668 (3)
H3A0.8033−0.24890.92950.080*
H3B0.8534−0.40240.96310.080*
O10.6110 (2)0.55328 (16)0.73145 (6)0.0812 (3)
C11.1305 (2)−0.20768 (19)0.95761 (7)0.0591 (3)
C21.1216 (3)0.1882 (2)0.88465 (7)0.0663 (4)
H2A1.27640.24980.89950.080*
C30.9864 (3)0.2818 (2)0.84546 (7)0.0630 (4)
C40.7501 (3)0.2031 (2)0.82202 (7)0.0681 (4)
H40.67250.08670.83210.082*
C50.6322 (3)0.2971 (2)0.78409 (8)0.0716 (4)
H50.47610.24310.76830.086*
C60.7444 (3)0.4721 (2)0.76919 (7)0.0677 (4)
C70.9777 (3)0.5528 (2)0.79263 (7)0.0726 (4)
H71.05360.67040.78330.087*
C81.0957 (3)0.4563 (2)0.82997 (7)0.0698 (4)
H81.25260.51000.84510.084*
C90.7089 (4)0.7404 (2)0.72041 (9)0.0880 (5)
H9A0.85640.75290.69830.106*
H9B0.74320.81610.76120.106*
C100.5257 (4)0.7986 (3)0.67937 (9)0.0890 (5)
H10A0.37170.76240.69820.107*
H10B0.56930.93090.68050.107*
C110.5012 (4)0.7192 (3)0.60985 (8)0.0811 (5)
H11A0.45230.58690.60850.097*
H11B0.65610.75220.59130.097*
C120.3221 (3)0.7838 (3)0.56889 (9)0.0817 (5)
H12A0.16600.74480.58630.098*
H12B0.36620.91640.57270.098*
C130.3025 (3)0.7155 (2)0.49799 (9)0.0826 (5)
H13A0.25730.58280.49400.099*
H13B0.45830.75430.48030.099*
C140.1228 (3)0.7824 (3)0.45814 (8)0.0810 (5)
H14A−0.03310.74200.47560.097*
H14B0.16670.91500.46290.097*
C150.1029 (4)0.7182 (3)0.38689 (9)0.0891 (5)
H15A0.05620.58570.38190.107*
H15B0.25890.75730.36930.107*
C16−0.0752 (4)0.7893 (3)0.34816 (10)0.0987 (6)
H16A−0.23290.74160.36240.148*
H16B−0.07100.75090.30310.148*
H16C−0.03470.92040.35440.148*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0526 (3)0.0696 (3)0.0871 (3)0.01517 (17)−0.00582 (18)0.02038 (19)
N10.0600 (7)0.0703 (8)0.0671 (7)0.0211 (5)−0.0045 (5)0.0120 (6)
N20.0551 (7)0.0706 (8)0.0817 (8)0.0141 (6)−0.0097 (6)0.0204 (6)
N30.0527 (6)0.0681 (7)0.0810 (8)0.0158 (5)−0.0032 (5)0.0155 (6)
O10.0863 (8)0.0834 (7)0.0823 (7)0.0315 (6)−0.0029 (6)0.0277 (6)
C10.0534 (7)0.0639 (8)0.0604 (8)0.0158 (6)0.0003 (6)0.0060 (6)
C20.0666 (9)0.0705 (9)0.0627 (8)0.0181 (7)−0.0032 (6)0.0120 (7)
C30.0680 (8)0.0687 (8)0.0555 (7)0.0224 (6)0.0007 (6)0.0090 (6)
C40.0709 (9)0.0664 (8)0.0691 (9)0.0191 (7)0.0004 (7)0.0152 (7)
C50.0677 (9)0.0792 (10)0.0713 (9)0.0228 (7)−0.0027 (7)0.0159 (7)
C60.0774 (9)0.0744 (9)0.0587 (8)0.0309 (7)0.0027 (7)0.0132 (7)
C70.0831 (10)0.0666 (9)0.0687 (9)0.0177 (7)0.0007 (7)0.0153 (7)
C80.0712 (9)0.0711 (9)0.0662 (9)0.0159 (7)−0.0042 (7)0.0102 (7)
C90.1125 (15)0.0781 (11)0.0813 (11)0.0368 (10)−0.0047 (10)0.0185 (9)
C100.1121 (15)0.0853 (11)0.0837 (12)0.0468 (11)0.0025 (10)0.0239 (9)
C110.0900 (12)0.0816 (11)0.0815 (11)0.0349 (9)0.0066 (9)0.0225 (8)
C120.0882 (12)0.0861 (11)0.0802 (11)0.0350 (9)0.0053 (9)0.0224 (9)
C130.0886 (12)0.0810 (11)0.0843 (11)0.0299 (9)0.0039 (9)0.0174 (9)
C140.0875 (12)0.0802 (10)0.0797 (11)0.0276 (9)0.0040 (8)0.0146 (8)
C150.0945 (13)0.0900 (12)0.0859 (12)0.0307 (10)−0.0021 (9)0.0068 (9)
C160.1001 (14)0.1156 (15)0.0842 (12)0.0372 (12)−0.0079 (10)0.0060 (11)

Geometric parameters (Å, °)

S1—C11.6930 (15)C9—H9A0.9700
N1—C21.275 (2)C9—H9B0.9700
N1—N21.3863 (16)C10—C111.507 (3)
N2—C11.341 (2)C10—H10A0.9700
N2—H20.8600C10—H10B0.9700
N3—C11.3227 (19)C11—C121.518 (2)
N3—H3A0.8600C11—H11A0.9700
N3—H3B0.8600C11—H11B0.9700
O1—C61.3665 (19)C12—C131.513 (3)
O1—C91.432 (2)C12—H12A0.9700
C2—C31.453 (2)C12—H12B0.9700
C2—H2A0.9300C13—C141.517 (2)
C3—C81.387 (2)C13—H13A0.9700
C3—C41.402 (2)C13—H13B0.9700
C4—C51.377 (2)C14—C151.512 (3)
C4—H40.9300C14—H14A0.9700
C5—C61.390 (2)C14—H14B0.9700
C5—H50.9300C15—C161.515 (3)
C6—C71.389 (2)C15—H15A0.9700
C7—C81.383 (2)C15—H15B0.9700
C7—H70.9300C16—H16A0.9600
C8—H80.9300C16—H16B0.9600
C9—C101.511 (3)C16—H16C0.9600
C2—N1—N2114.83 (13)C9—C10—H10A108.7
C1—N2—N1121.23 (12)C11—C10—H10B108.7
C1—N2—H2119.4C9—C10—H10B108.7
N1—N2—H2119.4H10A—C10—H10B107.6
C1—N3—H3A120.0C10—C11—C12113.38 (15)
C1—N3—H3B120.0C10—C11—H11A108.9
H3A—N3—H3B120.0C12—C11—H11A108.9
C6—O1—C9117.89 (14)C10—C11—H11B108.9
N3—C1—N2117.74 (13)C12—C11—H11B108.9
N3—C1—S1123.14 (12)H11A—C11—H11B107.7
N2—C1—S1119.09 (11)C13—C12—C11114.97 (15)
N1—C2—C3123.26 (14)C13—C12—H12A108.5
N1—C2—H2A118.4C11—C12—H12A108.5
C3—C2—H2A118.4C13—C12—H12B108.5
C8—C3—C4118.26 (14)C11—C12—H12B108.5
C8—C3—C2118.79 (14)H12A—C12—H12B107.5
C4—C3—C2122.94 (15)C12—C13—C14113.91 (15)
C5—C4—C3120.37 (15)C12—C13—H13A108.8
C5—C4—H4119.8C14—C13—H13A108.8
C3—C4—H4119.8C12—C13—H13B108.8
C4—C5—C6120.57 (15)C14—C13—H13B108.8
C4—C5—H5119.7H13A—C13—H13B107.7
C6—C5—H5119.7C15—C14—C13114.88 (16)
O1—C6—C7124.47 (15)C15—C14—H14A108.5
O1—C6—C5115.77 (15)C13—C14—H14A108.5
C7—C6—C5119.76 (15)C15—C14—H14B108.5
C8—C7—C6119.26 (15)C13—C14—H14B108.5
C8—C7—H7120.4H14A—C14—H14B107.5
C6—C7—H7120.4C14—C15—C16113.71 (16)
C7—C8—C3121.78 (15)C14—C15—H15A108.8
C7—C8—H8119.1C16—C15—H15A108.8
C3—C8—H8119.1C14—C15—H15B108.8
O1—C9—C10107.53 (17)C16—C15—H15B108.8
O1—C9—H9A110.2H15A—C15—H15B107.7
C10—C9—H9A110.2C15—C16—H16A109.5
O1—C9—H9B110.2C15—C16—H16B109.5
C10—C9—H9B110.2H16A—C16—H16B109.5
H9A—C9—H9B108.5C15—C16—H16C109.5
C11—C10—C9114.12 (15)H16A—C16—H16C109.5
C11—C10—H10A108.7H16B—C16—H16C109.5
C2—N1—N2—C1175.56 (13)O1—C6—C7—C8−179.39 (14)
N1—N2—C1—N3−4.3 (2)C5—C6—C7—C80.7 (2)
N1—N2—C1—S1174.08 (10)C6—C7—C8—C3−0.9 (2)
N2—N1—C2—C3177.06 (12)C4—C3—C8—C70.2 (2)
N1—C2—C3—C8−177.92 (14)C2—C3—C8—C7179.72 (13)
N1—C2—C3—C41.6 (2)C6—O1—C9—C10−178.39 (13)
C8—C3—C4—C50.7 (2)O1—C9—C10—C11−73.0 (2)
C2—C3—C4—C5−178.83 (13)C9—C10—C11—C12−178.21 (16)
C3—C4—C5—C6−0.8 (2)C10—C11—C12—C13176.73 (17)
C9—O1—C6—C7−6.4 (2)C11—C12—C13—C14−179.85 (15)
C9—O1—C6—C5173.52 (14)C12—C13—C14—C15179.08 (16)
C4—C5—C6—O1−179.76 (13)C13—C14—C15—C16−179.20 (17)
C4—C5—C6—C70.1 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2264).

References

  • Basuli, F., Peng, S.-M. & Bhattacharya, S. (2000). Inorg. Chem.39, 1120–1127. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • MacScience (2002). XPRESS MacScience Co. Ltd, Yokohama, Japan.
  • Narayana, B., Sunil, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4834–o4835.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Pal, I., Basuli, F. & Bhattacharya, S. (2002). Proc. Indian Acad. Sci. Chem. Sci.114, 255–268.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tarafder, M. T. H., Islam, M. A. A. A. A., Crouse, K. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o988–o989. [PMC free article] [PubMed]
  • Tian, Y.-P., Yu, W.-T., Zhao, C.-Y., Jiang, M.-H., Cai, Z.-G. & Fun, H. K. (2002). Polyhedron, 21, 1217–1222.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography