PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m86–m87.
Published online 2009 December 19. doi:  10.1107/S1600536809053896
PMCID: PMC2980029

catena-Poly[[[triaqua­manganese(II)]-μ-4,4′-bipyridine-κ2 N:N′-[triaqua­manganese(II)]-μ-pyrimidine-4,6-dicarboxyl­ato-κ4 N 1,O 6:N 3,O 4] sulfate trihydrate]

Abstract

The two independent MnII ions in the polymeric title compound, {[Mn2(C6H2N2O4)(C10H8N2)(H2O)6]SO4·3H2O}, exhibit distorted MnN2O4 octa­hedral coordination geometries, with the pyrimidine-4,6-dicarboxyl­ate (pmdc) ligand acting in the bis-chelating μ-(κONO′,κN′) bridging mode and the 4,4′-bipyridine (bpy) ligand in the μ-(κNN′) bridging mode. The remaining coordination sites are occupied by O atoms of water mol­ecules. As a consequence, cationic chains of [Mn2(μ-pmdc)(μ-4,4′-bpy)(H2O)6]2+ are generated, which extend approximately along the a axis. Sulfate counter-anions and three uncoordinated water mol­ecules complete the structure, which is stabilized by multiple O—H(...)O hydrogen-bonding inter­actions between the structural units.

Related literature

For the preparation of the pyrimidine-4,6-dicarboxyl­ato ligand (pmdc) we utilized the commercially available 4,6-dimethyl-pyrimidine, which can easily be oxidized to the corresponding dicarboxylic acid (H2pmdc), originally prepared by Hunt et al. (1959 [triangle]). For pmdc coordination compounds, see: Beobide et al. (2008 [triangle]); Masciocchi et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00m86-scheme1.jpg

Experimental

Crystal data

  • [Mn2(C6H2N2O4)(C10H8N2)(H2O)6]SO4·3H2O
  • M r = 690.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00m86-efi1.jpg
  • a = 18.745 (2) Å
  • b = 10.7639 (14) Å
  • c = 14.1585 (18) Å
  • β = 111.044 (2)°
  • V = 2666.2 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.11 mm−1
  • T = 298 K
  • 0.32 × 0.27 × 0.21 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.693, T max = 0.794
  • 30075 measured reflections
  • 6219 independent reflections
  • 5467 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.115
  • S = 1.09
  • 6219 reflections
  • 403 parameters
  • 14 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.62 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809053896/wm2288sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053896/wm2288Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from Spanish MEC (CTQ2008–00037/PPQ and SB-2005–0115) is gratefully acknowledged. The authors thank Professor Jorge A. R. Navarro and Miguel Quirós (U. Granada), Professor Oscar Castillo (U. Vasque Country) and Professor Norberto Masciocchi (U. Insubria) for helpful discussions.

supplementary crystallographic information

Comment

In the structure of the title compound there are two independent manganese ions. Each metal ion exhibits a distorted octahedral coordination geometry built up of one oxygen atom and one nitrogen atom from the bis-chelating pyrimidine-4,6-dicarboxylato ligand (pmdc), one nitrogen atom from the 4,4'-bipyridine (bpy) ligand and three oxygen atoms belonging to three coordinated water molecules (Fig. 1). The bridging nature of the pmdc and bpy ligands yields 1_D polymeric chains (Fig. 2) extending approximately along the a axis. The pmdc ligands adopt a µ-(κONO'',κN') coordination mode, and their N,O chelation results in the formation of two five-membered chelate rings for each metal ion.

The pmdc ligand combines the N,N'-coordination features of pyrimidine to the donor properties of the carboxylate group. Moreover, possessing two easily removable acidic hydrogen atoms, it can be coupled to the M(II) ions of the transition metal series, in search for homoleptic coordination compounds of [M(pmdc)] formulation. In this communication, we have employed 4,4'-bipyridine ligand in order to have a further connectivity.

The structur is in agreement with previous crystallographic studies carried out in our group revealing that the pmdc ligand typically displays a tetradentate µ-(κONO',κN') coordination mode with the carboxylate groups almost coplanar with the pyrimidine ring.

Experimental

The ligand pyrimidine-4,6-dicarboxylic acid (H2pmdc) was prepared from the oxidation of 4,6-dimethyl-pyrimidine (Hunt et al., 1959). The new metal complex [Mn2(µ-4,4'bpy)(µ-pmdc)(H2O)6]SO43H2O was obtained by reaction of an aqueous solution (30 ml) containing pyrimidine-4,6-dicarboxylato (168.3 mg) and MnSO4(H2O) (169.0 mg) at 353 K during 4 h. The resulting yellow suspension was cooled to room temperature and filtered. Subsequent diffusion of 4,4'_bipyridine (312.4 mg), dissolved in 10 ml of methanol, into this solution yielded pale yellow crystals suitable for X-ray diffraction after two weeks.

Refinement

The water H atoms were located in difference maps and were refined as riding with O—H = 0.82 Å and with Uiso(H) = 1.2Ueq(O). The pyrimidine an bipyridine H atoms were positioned geometrically and treated as riding with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound. Thermal displacement parameters are drawn at the 50% probability level.
Fig. 2.
View of the crystal packing showing the formation of [Mn2(µ-4,4'bpy)(µ-pmdc)(H2O)6] chains interacting through multiple H-bonding with sulfate and uncoordinated water molecules.

Crystal data

[Mn2(C6H2N2O4)(C10H8N2)(H2O)6]SO4·3H2OF(000) = 1416
Mr = 690.36Dx = 1.720 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5467 reflections
a = 18.745 (2) Åθ = 2.2–28.3°
b = 10.7639 (14) ŵ = 1.11 mm1
c = 14.1585 (18) ÅT = 298 K
β = 111.044 (2)°Prismatic, yellow
V = 2666.2 (6) Å30.32 × 0.27 × 0.21 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer6219 independent reflections
Radiation source: fine-focus sealed tube5467 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −24→24
Tmin = 0.693, Tmax = 0.794k = −14→14
30075 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0452P)2 + 3.6924P] where P = (Fo2 + 2Fc2)/3
6219 reflections(Δ/σ)max = 0.001
403 parametersΔρmax = 0.62 e Å3
14 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.08050 (2)0.39447 (4)0.41167 (3)0.02939 (11)
Mn20.44821 (2)0.39042 (4)0.63222 (3)0.02798 (11)
S30.73306 (3)−0.23319 (6)0.71958 (5)0.03205 (15)
O420.06099 (10)0.59414 (18)0.41849 (16)0.0379 (4)
O620.46593 (10)0.59002 (17)0.61315 (15)0.0347 (4)
O610.41374 (11)0.77834 (18)0.57634 (16)0.0402 (5)
C60.33123 (13)0.6050 (2)0.55476 (18)0.0254 (5)
C40.19647 (13)0.6050 (2)0.48627 (19)0.0269 (5)
O410.11712 (12)0.7803 (2)0.4390 (2)0.0518 (6)
N30.19627 (11)0.48139 (19)0.49708 (16)0.0282 (4)
C4B10.72311 (13)0.2647 (2)0.73258 (18)0.0275 (5)
O4S0.68705 (13)−0.1207 (2)0.6968 (2)0.0562 (6)
N1B10.57019 (12)0.3380 (2)0.67793 (17)0.0317 (5)
C610.41011 (13)0.6651 (2)0.58391 (18)0.0283 (5)
N10.33086 (11)0.48247 (19)0.56945 (15)0.0266 (4)
O3S0.71671 (16)−0.3041 (3)0.7977 (2)0.0683 (8)
C4B0.80457 (13)0.2258 (2)0.76527 (19)0.0285 (5)
O2S0.81545 (12)−0.2037 (2)0.75528 (17)0.0502 (6)
C50.26391 (13)0.6720 (2)0.51419 (19)0.0292 (5)
H50.26400.75770.50610.035*
C410.11792 (14)0.6673 (3)0.4435 (2)0.0322 (5)
C3B10.70266 (15)0.3893 (3)0.7259 (2)0.0393 (7)
H3B10.73980.45080.73880.047*
C6B10.66448 (14)0.1778 (2)0.7099 (2)0.0320 (5)
H6B10.67550.09330.71310.038*
C5B10.58987 (14)0.2179 (3)0.6825 (2)0.0347 (6)
H5B10.55130.15850.66640.042*
C5B0.82614 (16)0.1080 (3)0.7465 (2)0.0399 (7)
H5B0.78920.05080.71030.048*
C2B10.62669 (15)0.4210 (3)0.6999 (2)0.0397 (6)
H2B10.61420.50490.69750.048*
C20.26343 (13)0.4251 (2)0.53933 (19)0.0288 (5)
H20.26330.33960.54850.035*
C3B0.86230 (16)0.3063 (3)0.8178 (3)0.0486 (8)
H3B0.85090.38670.83180.058*
O1S0.71547 (15)−0.3118 (3)0.6300 (2)0.0710 (8)
C6B0.90251 (15)0.0755 (3)0.7817 (2)0.0372 (6)
H6B0.9157−0.00420.76850.045*
C2B0.93727 (16)0.2667 (3)0.8495 (3)0.0541 (9)
H2B0.97540.32280.88420.065*
N1B0.95814 (12)0.1532 (2)0.83358 (18)0.0332 (5)
O1W0.10573 (14)0.4228 (2)0.27392 (19)0.0519 (6)
H1AW0.0712 (16)0.435 (4)0.2194 (15)0.062*
H1BW0.1360 (18)0.375 (3)0.264 (3)0.062*
O2W0.43373 (12)0.3359 (3)0.48008 (17)0.0513 (6)
H2BW0.4601 (19)0.363 (4)0.449 (3)0.062*
H2AW0.3894 (8)0.326 (4)0.442 (2)0.062*
O21W0.40118 (13)0.2081 (2)0.63974 (18)0.0447 (5)
H21A0.3698 (16)0.209 (3)0.668 (2)0.054*
H21B0.386 (2)0.152 (2)0.597 (2)0.054*
O11W0.07172 (11)0.3346 (2)0.55418 (16)0.0440 (5)
H11A0.0316 (11)0.344 (4)0.564 (3)0.053*
H11B0.1089 (13)0.329 (4)0.6068 (15)0.053*
O5W0.33986 (19)0.0155 (3)0.5038 (2)0.0762 (9)
H5AW0.33890.04240.44930.091*
H5BW0.3658−0.04730.50880.091*
O4W−0.0045 (3)0.4496 (4)0.0930 (3)0.1043 (14)
H4AW−0.041 (2)0.401 (5)0.076 (5)0.125*
H4BW0.014 (4)0.418 (6)0.054 (4)0.125*
O3W0.1920 (3)0.0473 (4)0.5488 (3)0.1201 (15)
H3AW0.15030.04250.55490.144*
H3BW0.22010.09160.59410.144*
O12W0.12484 (14)0.2100 (2)0.40278 (19)0.0480 (5)
H12A0.1488 (19)0.169 (3)0.4530 (18)0.058*
H12B0.1474 (19)0.199 (4)0.364 (2)0.058*
O22W0.45581 (11)0.4068 (2)0.79051 (16)0.0377 (4)
H22A0.4150 (10)0.391 (3)0.797 (3)0.045*
H22B0.4929 (13)0.371 (3)0.831 (2)0.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.01547 (18)0.0318 (2)0.0378 (2)−0.00094 (14)0.00581 (15)0.00010 (15)
Mn20.01635 (18)0.0299 (2)0.0356 (2)0.00222 (13)0.00679 (15)0.00286 (15)
S30.0237 (3)0.0358 (3)0.0379 (3)−0.0039 (2)0.0126 (3)−0.0078 (3)
O420.0181 (8)0.0374 (10)0.0546 (12)0.0046 (7)0.0087 (8)−0.0006 (9)
O620.0174 (8)0.0339 (10)0.0491 (11)−0.0013 (7)0.0074 (8)0.0057 (8)
O610.0278 (9)0.0305 (10)0.0569 (12)−0.0052 (8)0.0086 (9)0.0014 (9)
C60.0193 (11)0.0280 (12)0.0280 (11)−0.0011 (9)0.0074 (9)−0.0009 (9)
C40.0190 (11)0.0285 (12)0.0318 (12)0.0028 (9)0.0075 (9)0.0002 (9)
O410.0319 (11)0.0336 (11)0.0861 (17)0.0099 (9)0.0164 (11)0.0090 (11)
N30.0187 (9)0.0279 (10)0.0363 (11)0.0012 (8)0.0077 (8)0.0009 (8)
C4B10.0185 (11)0.0296 (12)0.0322 (12)0.0027 (9)0.0064 (9)0.0015 (10)
O4S0.0382 (12)0.0447 (13)0.0896 (18)0.0063 (10)0.0277 (12)0.0078 (12)
N1B10.0202 (10)0.0348 (12)0.0372 (11)0.0028 (8)0.0068 (8)0.0011 (9)
C610.0205 (11)0.0317 (13)0.0305 (12)−0.0036 (9)0.0066 (9)0.0010 (10)
N10.0176 (9)0.0285 (10)0.0313 (10)0.0008 (8)0.0061 (8)0.0026 (8)
O3S0.0730 (18)0.0612 (16)0.093 (2)0.0118 (14)0.0574 (16)0.0194 (14)
C4B0.0187 (11)0.0292 (12)0.0349 (12)0.0019 (9)0.0064 (9)0.0027 (10)
O2S0.0283 (10)0.0618 (15)0.0542 (13)−0.0055 (10)0.0072 (9)−0.0114 (11)
C50.0223 (11)0.0251 (12)0.0387 (13)0.0008 (9)0.0092 (10)0.0007 (10)
C410.0195 (11)0.0347 (14)0.0416 (14)0.0060 (10)0.0102 (10)0.0029 (11)
C3B10.0199 (12)0.0286 (13)0.0628 (19)−0.0016 (10)0.0068 (12)0.0024 (12)
C6B10.0218 (11)0.0268 (12)0.0450 (14)0.0008 (9)0.0090 (10)−0.0015 (10)
C5B10.0206 (12)0.0314 (13)0.0500 (16)−0.0022 (10)0.0100 (11)−0.0029 (11)
C5B0.0237 (13)0.0335 (14)0.0549 (17)−0.0012 (10)0.0048 (12)−0.0092 (12)
C2B10.0247 (13)0.0270 (13)0.0607 (18)0.0044 (10)0.0073 (12)0.0021 (12)
C20.0192 (11)0.0264 (12)0.0376 (13)0.0003 (9)0.0064 (10)0.0025 (10)
C3B0.0236 (13)0.0295 (14)0.080 (2)0.0028 (11)0.0031 (14)−0.0115 (14)
O1S0.0519 (15)0.090 (2)0.0696 (17)−0.0077 (14)0.0206 (13)−0.0426 (15)
C6B0.0238 (12)0.0311 (13)0.0511 (16)0.0041 (10)0.0068 (11)−0.0045 (12)
C2B0.0222 (13)0.0356 (16)0.089 (3)−0.0018 (11)0.0008 (14)−0.0155 (16)
N1B0.0175 (10)0.0322 (11)0.0450 (13)0.0025 (8)0.0055 (9)0.0002 (9)
O1W0.0490 (14)0.0593 (15)0.0528 (13)0.0171 (11)0.0249 (11)0.0136 (12)
O2W0.0264 (10)0.0890 (18)0.0385 (11)−0.0109 (11)0.0116 (9)−0.0063 (11)
O21W0.0458 (12)0.0376 (11)0.0572 (14)−0.0097 (9)0.0263 (11)−0.0072 (9)
O11W0.0234 (9)0.0704 (15)0.0373 (11)0.0081 (10)0.0097 (8)0.0067 (10)
O5W0.103 (2)0.0530 (16)0.0651 (17)0.0213 (15)0.0207 (16)−0.0019 (13)
O4W0.121 (3)0.105 (3)0.066 (2)−0.079 (3)0.0082 (19)0.0021 (18)
O3W0.155 (4)0.093 (3)0.087 (3)0.023 (3)0.013 (2)0.032 (2)
O12W0.0500 (13)0.0449 (13)0.0583 (14)0.0126 (10)0.0305 (11)0.0090 (10)
O22W0.0284 (10)0.0438 (11)0.0395 (10)0.0049 (8)0.0106 (8)0.0049 (8)

Geometric parameters (Å, °)

Mn1—O12W2.174 (2)C5—H50.9300
Mn1—O11W2.180 (2)C3B1—C2B11.380 (4)
Mn1—O1W2.187 (2)C3B1—H3B10.9300
Mn1—O422.188 (2)C6B1—C5B11.380 (3)
Mn1—N1Bi2.219 (2)C6B1—H6B10.9300
Mn1—N32.272 (2)C5B1—H5B10.9300
Mn2—O2W2.154 (2)C5B—C6B1.381 (4)
Mn2—O21W2.170 (2)C5B—H5B0.9300
Mn2—O22W2.201 (2)C2B1—H2B10.9300
Mn2—O622.2055 (19)C2—H20.9300
Mn2—N1B12.214 (2)C3B—C2B1.380 (4)
Mn2—N12.282 (2)C3B—H3B0.9300
S3—O4S1.454 (2)C6B—N1B1.333 (3)
S3—O1S1.461 (2)C6B—H6B0.9300
S3—O3S1.463 (3)C2B—N1B1.326 (4)
S3—O2S1.477 (2)C2B—H2B0.9300
O42—C411.270 (3)N1B—Mn1ii2.219 (2)
O62—C611.268 (3)O1W—H1AW0.820 (5)
O61—C611.228 (3)O1W—H1BW0.818 (5)
C6—N11.336 (3)O2W—H2BW0.820 (5)
C6—C51.386 (3)O2W—H2AW0.818 (5)
C6—C611.528 (3)O21W—H21A0.820 (5)
C4—N31.339 (3)O21W—H21B0.821 (5)
C4—C51.384 (3)O11W—H11A0.820 (5)
C4—C411.531 (3)O11W—H11B0.819 (5)
O41—C411.217 (3)O5W—H5AW0.8183
N3—C21.330 (3)O5W—H5BW0.8202
C4B1—C3B11.389 (4)O4W—H4AW0.819 (5)
C4B1—C6B11.390 (3)O4W—H4BW0.820 (5)
C4B1—C4B1.488 (3)O3W—H3AW0.8192
N1B1—C2B11.335 (3)O3W—H3BW0.8207
N1B1—C5B11.340 (3)O12W—H12A0.820 (5)
N1—C21.332 (3)O12W—H12B0.819 (5)
C4B—C3B1.377 (4)O22W—H22A0.821 (5)
C4B—C5B1.385 (4)O22W—H22B0.819 (5)
O12W—Mn1—O11W86.62 (9)C3B—C4B—C4B1120.7 (2)
O12W—Mn1—O1W82.31 (9)C5B—C4B—C4B1122.4 (2)
O11W—Mn1—O1W168.25 (9)C4—C5—C6116.7 (2)
O12W—Mn1—O42166.73 (8)C4—C5—H5121.6
O11W—Mn1—O42100.38 (9)C6—C5—H5121.6
O1W—Mn1—O4289.74 (9)O41—C41—O42127.7 (2)
O12W—Mn1—N1Bi96.20 (9)O41—C41—C4116.8 (2)
O11W—Mn1—N1Bi89.12 (8)O42—C41—C4115.5 (2)
O1W—Mn1—N1Bi95.96 (9)C2B1—C3B1—C4B1119.4 (2)
O42—Mn1—N1Bi95.17 (8)C2B1—C3B1—H3B1120.3
O12W—Mn1—N395.45 (9)C4B1—C3B1—H3B1120.3
O11W—Mn1—N390.24 (8)C5B1—C6B1—C4B1119.5 (2)
O1W—Mn1—N386.91 (9)C5B1—C6B1—H6B1120.3
O42—Mn1—N373.43 (7)C4B1—C6B1—H6B1120.3
N1Bi—Mn1—N3168.27 (8)N1B1—C5B1—C6B1123.3 (2)
O2W—Mn2—O21W83.99 (10)N1B1—C5B1—H5B1118.3
O2W—Mn2—O22W168.25 (9)C6B1—C5B1—H5B1118.3
O21W—Mn2—O22W84.33 (8)C6B—C5B—C4B119.9 (3)
O2W—Mn2—O6296.50 (9)C6B—C5B—H5B120.0
O21W—Mn2—O62165.68 (8)C4B—C5B—H5B120.0
O22W—Mn2—O6295.12 (8)N1B1—C2B1—C3B1123.6 (3)
O2W—Mn2—N1B188.22 (8)N1B1—C2B1—H2B1118.2
O21W—Mn2—N1B198.64 (9)C3B1—C2B1—H2B1118.2
O22W—Mn2—N1B192.31 (8)N3—C2—N1124.7 (2)
O62—Mn2—N1B195.68 (8)N3—C2—H2117.6
O2W—Mn2—N188.34 (8)N1—C2—H2117.6
O21W—Mn2—N193.45 (8)C4B—C3B—C2B119.5 (3)
O22W—Mn2—N193.60 (7)C4B—C3B—H3B120.3
O62—Mn2—N172.29 (7)C2B—C3B—H3B120.3
N1B1—Mn2—N1167.02 (8)N1B—C6B—C5B123.0 (3)
O4S—S3—O1S111.02 (17)N1B—C6B—H6B118.5
O4S—S3—O3S109.49 (15)C5B—C6B—H6B118.5
O1S—S3—O3S108.10 (19)N1B—C2B—C3B123.9 (3)
O4S—S3—O2S111.16 (14)N1B—C2B—H2B118.1
O1S—S3—O2S107.70 (14)C3B—C2B—H2B118.1
O3S—S3—O2S109.30 (16)C2B—N1B—C6B116.8 (2)
C41—O42—Mn1118.98 (16)C2B—N1B—Mn1ii116.33 (18)
C61—O62—Mn2121.17 (15)C6B—N1B—Mn1ii126.39 (18)
N1—C6—C5121.5 (2)Mn1—O1W—H1AW121 (3)
N1—C6—C61115.7 (2)Mn1—O1W—H1BW117 (3)
C5—C6—C61122.7 (2)H1AW—O1W—H1BW107 (4)
N3—C4—C5121.6 (2)Mn2—O2W—H2BW124 (3)
N3—C4—C41116.0 (2)Mn2—O2W—H2AW115 (3)
C5—C4—C41122.3 (2)H2BW—O2W—H2AW111 (4)
C2—N3—C4117.6 (2)Mn2—O21W—H21A113 (3)
C2—N3—Mn1128.39 (17)Mn2—O21W—H21B131 (3)
C4—N3—Mn1112.93 (16)H21A—O21W—H21B104 (4)
C3B1—C4B1—C6B1117.3 (2)Mn1—O11W—H11A120 (3)
C3B1—C4B1—C4B121.4 (2)Mn1—O11W—H11B123 (3)
C6B1—C4B1—C4B121.3 (2)H11A—O11W—H11B113 (4)
C2B1—N1B1—C5B1117.0 (2)H5AW—O5W—H5BW100.7
C2B1—N1B1—Mn2123.17 (18)H4AW—O4W—H4BW93 (6)
C5B1—N1B1—Mn2119.85 (17)H3AW—O3W—H3BW108.8
O61—C61—O62126.6 (2)Mn1—O12W—H12A123 (3)
O61—C61—C6118.3 (2)Mn1—O12W—H12B118 (3)
O62—C61—C6115.1 (2)H12A—O12W—H12B105 (4)
C2—N1—C6117.7 (2)Mn2—O22W—H22A112 (3)
C2—N1—Mn2126.51 (17)Mn2—O22W—H22B114 (2)
C6—N1—Mn2115.55 (15)H22A—O22W—H22B115 (3)
C3B—C4B—C5B116.9 (2)

Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) x+1, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1AW···O4W0.82 (1)1.85 (1)2.667 (5)176 (4)
O1W—H1BW···O2Siii0.82 (1)2.11 (2)2.891 (3)159 (4)
O2W—H2BW···O62iv0.82 (1)1.96 (1)2.775 (3)172 (4)
O2W—H2AW···O1Siii0.82 (1)1.87 (1)2.681 (3)172 (4)
O21W—H21A···O3Sv0.82 (1)1.86 (1)2.663 (3)166 (4)
O21W—H21B···O5W0.82 (1)1.97 (1)2.782 (4)172 (4)
O11W—H11A···O42vi0.82 (1)1.95 (1)2.760 (3)167 (4)
O11W—H11B···O2Sv0.82 (1)1.99 (1)2.797 (3)168 (4)
O5W—H5AW···O4Siii0.822.122.927 (4)168
O5W—H5BW···O61vii0.822.152.910 (3)154
O4W—H4AW···O41viii0.82 (1)1.89 (1)2.702 (4)170 (6)
O4W—H4BW···O4Wix0.82 (1)2.48 (6)2.908 (7)114 (6)
O3W—H3BW···O3Sv0.821.932.746 (5)178
O12W—H12A···O3W0.82 (1)1.85 (1)2.656 (4)167 (4)
O12W—H12B···O2Siii0.82 (1)2.04 (1)2.840 (3)166 (4)
O22W—H22A···O4Sv0.82 (1)1.95 (1)2.764 (3)171 (3)
O22W—H22B···O61x0.82 (1)2.03 (1)2.852 (3)177 (3)

Symmetry codes: (iii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x+1, y+1/2, −z+3/2; (vi) −x, −y+1, −z+1; (vii) x, y−1, z; (viii) −x, y−1/2, −z+1/2; (ix) −x, −y+1, −z; (x) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2288).

References

  • Beobide, G., Wang, W., Castillo, O., Luque, A., Román, P., Tagliabue, G., Galli, S. & Navarro, J. A. R. (2008). Inorg. Chem. pp. 5267–5277. [PubMed]
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hunt, R. R., McOmie, J. F. W. & Sayer, E. R. (1959). J. Chem. Soc. p. 525–530.
  • Masciocchi, N., Galli, S., Tagliabue, G., Sironi, A., Castillo, O., Luque, A., Beobide, G., Wang, W., Romero, M. A., Barea, E. & Navarro, J. A. R. (2009). Inorg. Chem. pp. 3087–3094. [PubMed]
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography