PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m23.
Published online 2009 December 9. doi:  10.1107/S1600536809051836
PMCID: PMC2980019

catena-Poly[[diaquazinc(II)]-μ3-2,2′-dihydr­oxy-1,1′-binaphthyl-3,3′-di­carboxyl­ato-κ3 O:O′:O′′]

Abstract

In the title coordination complex, [Zn(C22H12O6)(H2O)2]n or [Zn(H2nba)(H2O)2]n (H2nba is 2,2′-dihydr­oxy-1,1′-bi­naph­thyl-3,3′-dicarboxyl­ate), the ZnII atom is coordinated by three H2nba ligands and two water molecules, resulting in a distorted trigonal-bipyramidal geometry. In the crystal structure, adjacent ZnII atoms are linked by two H2nba ligands, forming one-dimensional ribbons along the c axis. These ribbons are further assembled into layers parallel to the bc plane via O—H(...)O hydrogen bonds.

Related literature

For d 10 metal complexes with the H2nba ligand, see: Han et al. (2008 [triangle]); Zheng et al. (2004 [triangle]). For the potential coordination modes of the H4nba ligand, see: Zhang et al. (2006 [triangle]). For related structures, see: Zhang et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00m23-scheme1.jpg

Experimental

Crystal data

  • [Zn(C22H12O6)(H2O)2]
  • M r = 473.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00m23-efi1.jpg
  • a = 15.4581 (19) Å
  • b = 9.5876 (10) Å
  • c = 13.4453 (14) Å
  • β = 90.047 (4)°
  • V = 1992.7 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.28 mm−1
  • T = 293 K
  • 0.20 × 0.18 × 0.10 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.784, T max = 0.883
  • 10598 measured reflections
  • 4323 independent reflections
  • 3258 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.118
  • S = 1.06
  • 4323 reflections
  • 280 parameters
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]) and OLEX (Dolomanov et al., 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809051836/ng2697sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051836/ng2697Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Recently much interest has been focused on the design and synthesis of coordination polymers with d10 metal ions and dicarboxylate not only for their interesting molecular topologies, but also for the fact that they may be designed with photoluminescence (Han et al. 2008; Zheng et al. 2004). The 2,2'-dihydroxy-[1,1']-binaphthalene-3,3'-dicarboxylic acid (H4nba) is a multifunctional ligand containing both carboxylic and hydroxy groups, which can potentially afford various coordination modes (Zhang et al., 2006). Meanwhile, it also possesses both rigidity and flexibility, since the naphthyl rings can be twisted at some degrees across the C–C single bond due to steric effect. As an extension of our previous investigations, H4nba was introduced into zinc dicarboxylate system and the title coordination complex was isolated. In the title complex, each ZnII atom is coordinated by five O atoms from three H2nba ligands and two aqua ligands in a distorted trigonal-bipyramidal geometry, with the two coordinated aqua ligands at the axial sites (Figure 1). Two ZnII atoms related by a twofold axis are brideged by a pair of the H2nba ligands µ-carboxylate ends into a dinuclear unit [Zn1···Zn1A = 3.4971 (5) Å] and the distance is nearer than that of the m-phthalalate ligands (Zhang et al., 2003). The H2nba ligands act in the mono bridging bidentate coordination mode to link the adjacent ZnII atoms to form one-dimensional ribbons running along the c axis (Figure 2). These ribbons are assembled into layers paralled to the bc plane by the O–H···O hydrogen bonds. The O1w···O6iv distance is 2.866 (3) Å and the O2w···O5v distance is 2.715 (4) Å [symmetry codes: (iv) x, -1/2 - y, 1/2 + z; (v) x, 1/2 - y, 1/2 + z] (Figure 3 and Table 1).

Experimental

A mixture of Zn(CH3COO)2 (0.184 g, 1 mmol), H4nba (0.094 g, 0.25 mmol) and NaOH (0.020 g, 0.50 mmol) in water (10 ml) was heated for 3 days at 130°C in a Parr Teflon-lined stainless steel vessel (23 ml), cooled to room temperature at a rate of 5 °C h-1. Pale-yellow crystals of the title complex were collected, washed with water and dried in air (yield 80%). IR data (KBr, cm-1): 3364m, 3057m, 1953w, 1832w, 1643 s, 1585m, 1505 s, 1457 s, 1397 s, 1340m, 1304m, 1239 s, 1152m, 1079w, 1007w, 939m, 866m, 807 s, 749 s, 624w, 598m, 440m. Anal. Calcd (%) for C22H16O8Zn: C, 55.78; H, 3.40. Found: C, 55.50; H, 3.72.

Refinement

H atoms were positioned geometrically, with C—H = 0.95 (aromatic), 0.98(methyl), 0.99(methylene) and O—H = 0.82 Å, and refined as riding on their parent atoms with Uiso(H)= 1.5Ueq(C) for methyl H and 1.2Ueq(C, O) for all other H.

Figures

Fig. 1.
Part of the polymer network of the title complex, showing 50% probability displacement ellipsoids [Symmetry codes: (A) 1 - x, -y, 2 - z; (B) x, y, 1 + z; (C) 1 - x, -y, 1 - z]. Unlabelled atoms are related to labelled atoms by the sysmmetry operations ...
Fig. 2.
Perspective view showing the ZnII atoms connected by H2nba ligands into ribbons along the c axis. H atoms have been omitted for clarity.
Fig. 3.
Packing diagram, viewed along the c axis. Dashed lines indicated hydrogen bonds. H atoms have been omitted for clarity.

Crystal data

[Zn(C22H12O6)(H2O)2]F(000) = 968
Mr = 473.72Dx = 1.579 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3258 reflections
a = 15.4581 (19) Åθ = 2–27°
b = 9.5876 (10) ŵ = 1.28 mm1
c = 13.4453 (14) ÅT = 293 K
β = 90.047 (4)°Block, yellow
V = 1992.7 (4) Å30.20 × 0.18 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX area-detector diffractometer4323 independent reflections
Radiation source: fine-focus sealed tube3258 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −19→9
Tmin = 0.784, Tmax = 0.883k = −12→9
10598 measured reflectionsl = −15→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0604P)2 + 0.1133P] where P = (Fo2 + 2Fc2)/3
4323 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.57700 (2)0.01105 (3)0.90514 (2)0.03018 (13)
O10.64675 (16)−0.0504 (2)0.79378 (15)0.0433 (6)
O20.59198 (15)0.1048 (2)0.68741 (14)0.0422 (6)
O30.54356 (14)−0.0097 (2)0.14753 (16)0.0420 (6)
O40.63139 (15)0.0708 (2)0.02993 (14)0.0395 (5)
O50.64514 (15)0.1116 (2)0.51057 (14)0.0408 (6)
H5A0.61860.13400.56090.061*
O60.61219 (13)−0.0839 (2)0.31663 (14)0.0339 (5)
H6A0.5752−0.08220.27290.051*
C10.6393 (2)0.0014 (3)0.7071 (2)0.0326 (7)
C20.69136 (19)−0.0645 (3)0.62605 (19)0.0284 (6)
C30.73883 (19)−0.1821 (3)0.6437 (2)0.0307 (6)
H3A0.7375−0.22210.70670.037*
C40.78967 (18)−0.2444 (3)0.5691 (2)0.0296 (6)
C50.8370 (2)−0.3682 (3)0.5858 (2)0.0374 (7)
H5B0.8364−0.40840.64870.045*
C60.8832 (2)−0.4300 (3)0.5123 (3)0.0443 (8)
H6B0.9127−0.51270.52460.053*
C70.8861 (2)−0.3681 (4)0.4173 (3)0.0488 (9)
H7A0.9177−0.41040.36680.059*
C80.8431 (2)−0.2469 (3)0.3988 (2)0.0383 (7)
H8A0.8473−0.20610.33620.046*
C90.79223 (18)−0.1818 (3)0.47289 (19)0.0285 (6)
C100.74391 (18)−0.0585 (3)0.45474 (19)0.0257 (6)
C110.6935 (2)−0.0044 (3)0.5296 (2)0.0280 (6)
C120.74652 (19)0.0145 (3)0.35614 (19)0.0253 (6)
C130.81783 (19)0.1036 (3)0.3325 (2)0.0294 (6)
C140.8882 (2)0.1224 (4)0.3978 (2)0.0453 (8)
H14A0.88910.07530.45830.054*
C150.9553 (2)0.2087 (4)0.3735 (3)0.0583 (10)
H15A1.00150.21910.41730.070*
C160.9551 (2)0.2816 (4)0.2834 (3)0.0589 (11)
H16A1.00050.34150.26820.071*
C170.8890 (2)0.2652 (4)0.2181 (2)0.0480 (9)
H17A0.89010.31290.15790.058*
C180.81814 (19)0.1762 (3)0.2405 (2)0.0312 (7)
C190.7502 (2)0.1528 (3)0.1732 (2)0.0304 (7)
H19A0.75160.19710.11170.036*
C200.68185 (18)0.0671 (3)0.19490 (18)0.0238 (6)
C210.6144 (2)0.0419 (3)0.1182 (2)0.0284 (6)
C220.67968 (18)−0.0008 (3)0.28986 (19)0.0236 (6)
O1W0.56864 (16)−0.2006 (2)0.95518 (16)0.0462 (6)
H1WA0.5280−0.22350.99440.069*
H1WB0.6059−0.25940.93500.069*
O2W0.56514 (17)0.2292 (2)0.87072 (16)0.0518 (7)
H2WA0.60610.26870.90230.078*
H2WB0.58090.22830.81020.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0311 (2)0.0431 (2)0.01629 (17)−0.00210 (16)−0.00209 (13)−0.00114 (13)
O10.0522 (15)0.0580 (13)0.0198 (10)0.0129 (12)0.0082 (10)0.0063 (10)
O20.0533 (15)0.0479 (13)0.0254 (11)0.0149 (11)0.0027 (10)0.0015 (9)
O30.0338 (12)0.0618 (15)0.0303 (12)−0.0129 (11)−0.0120 (10)0.0151 (10)
O40.0500 (14)0.0508 (13)0.0177 (10)−0.0138 (11)−0.0080 (9)0.0024 (9)
O50.0615 (15)0.0406 (12)0.0202 (10)0.0186 (11)0.0043 (10)0.0032 (9)
O60.0325 (11)0.0461 (12)0.0232 (10)−0.0123 (10)−0.0070 (9)0.0098 (9)
C10.0366 (17)0.0391 (17)0.0221 (14)0.0005 (14)0.0012 (13)0.0020 (12)
C20.0308 (15)0.0349 (15)0.0196 (13)0.0001 (13)−0.0016 (12)0.0017 (11)
C30.0348 (16)0.0376 (16)0.0198 (13)−0.0018 (14)−0.0028 (12)0.0074 (12)
C40.0263 (15)0.0331 (15)0.0293 (15)−0.0024 (12)−0.0048 (12)0.0026 (12)
C50.0334 (17)0.0378 (17)0.0411 (18)−0.0003 (14)−0.0046 (14)0.0100 (14)
C60.040 (2)0.0373 (18)0.055 (2)0.0081 (16)−0.0019 (17)0.0038 (16)
C70.046 (2)0.053 (2)0.048 (2)0.0129 (17)0.0067 (17)−0.0114 (16)
C80.0387 (18)0.0488 (19)0.0274 (16)0.0058 (15)−0.0008 (14)−0.0037 (13)
C90.0259 (15)0.0354 (16)0.0241 (14)−0.0025 (12)−0.0057 (12)−0.0002 (12)
C100.0286 (15)0.0311 (14)0.0174 (13)−0.0010 (12)−0.0056 (11)0.0035 (11)
C110.0324 (15)0.0315 (15)0.0201 (13)0.0029 (13)−0.0030 (12)0.0001 (11)
C120.0310 (15)0.0287 (14)0.0162 (12)0.0006 (12)−0.0008 (11)0.0011 (11)
C130.0305 (15)0.0348 (16)0.0230 (14)−0.0043 (13)−0.0038 (12)−0.0027 (12)
C140.041 (2)0.063 (2)0.0315 (17)−0.0153 (17)−0.0100 (15)0.0038 (15)
C150.043 (2)0.083 (3)0.048 (2)−0.026 (2)−0.0156 (18)−0.002 (2)
C160.042 (2)0.077 (3)0.059 (2)−0.032 (2)−0.0020 (19)0.004 (2)
C170.050 (2)0.057 (2)0.0376 (18)−0.0211 (18)0.0020 (16)0.0081 (15)
C180.0313 (16)0.0357 (16)0.0264 (14)−0.0056 (13)0.0012 (12)−0.0003 (12)
C190.0388 (17)0.0325 (15)0.0198 (13)−0.0013 (13)−0.0003 (12)0.0049 (11)
C200.0267 (14)0.0269 (13)0.0178 (12)−0.0006 (12)−0.0030 (11)−0.0003 (11)
C210.0373 (17)0.0278 (14)0.0199 (13)−0.0029 (13)−0.0048 (12)0.0023 (11)
C220.0287 (14)0.0243 (13)0.0179 (12)−0.0006 (12)0.0008 (11)−0.0001 (10)
O1W0.0625 (16)0.0376 (12)0.0384 (13)0.0087 (11)0.0125 (11)0.0014 (10)
O2W0.0822 (19)0.0437 (13)0.0294 (12)−0.0184 (13)−0.0089 (12)0.0003 (10)

Geometric parameters (Å, °)

Zn1—O11.937 (2)C7—H7A0.9300
Zn1—O4i1.9616 (19)C8—C91.415 (4)
Zn1—O3ii1.993 (2)C8—H8A0.9300
Zn1—O1W2.142 (2)C9—C101.419 (4)
Zn1—O2W2.150 (2)C10—C111.375 (4)
O1—C11.273 (3)C10—C121.500 (3)
O2—C11.259 (3)C12—C221.372 (4)
O3—C211.265 (4)C12—C131.431 (4)
O3—Zn1ii1.993 (2)C13—C141.410 (4)
O4—C211.247 (3)C13—C181.420 (4)
O4—Zn1iii1.9616 (19)C14—C151.367 (5)
O5—C111.364 (3)C14—H14A0.9300
O5—H5A0.8200C15—C161.399 (5)
O6—C221.361 (3)C15—H15A0.9300
O6—H6A0.8200C16—C171.355 (5)
C1—C21.495 (4)C16—H16A0.9300
C2—C31.366 (4)C17—C181.421 (4)
C2—C111.419 (4)C17—H17A0.9300
C3—C41.407 (4)C18—C191.403 (4)
C3—H3A0.9300C19—C201.371 (4)
C4—C51.412 (4)C19—H19A0.9300
C4—C91.427 (4)C20—C221.433 (3)
C5—C61.355 (4)C20—C211.486 (4)
C5—H5B0.9300O1W—H1WA0.8502
C6—C71.409 (5)O1W—H1WB0.8499
C6—H6B0.9300O2W—H2WA0.8500
C7—C81.362 (5)O2W—H2WB0.8500
O1—Zn1—O4i120.75 (10)C9—C10—C12121.7 (2)
O1—Zn1—O3ii104.14 (10)O5—C11—C10118.8 (2)
O4i—Zn1—O3ii134.89 (10)O5—C11—C2119.3 (2)
O1—Zn1—O1W89.35 (9)C10—C11—C2122.0 (3)
O4i—Zn1—O1W91.94 (9)C22—C12—C13120.0 (2)
O3ii—Zn1—O1W92.80 (9)C22—C12—C10120.2 (2)
O1—Zn1—O2W100.18 (9)C13—C12—C10119.8 (2)
O4i—Zn1—O2W86.36 (9)C14—C13—C18118.5 (3)
O3ii—Zn1—O2W81.39 (9)C14—C13—C12122.2 (3)
O1W—Zn1—O2W169.80 (9)C18—C13—C12119.3 (3)
C1—O1—Zn1122.6 (2)C15—C14—C13120.9 (3)
C21—O3—Zn1ii134.52 (19)C15—C14—H14A119.5
C21—O4—Zn1iii131.2 (2)C13—C14—H14A119.5
C11—O5—H5A109.5C14—C15—C16120.5 (3)
C22—O6—H6A109.5C14—C15—H15A119.7
O2—C1—O1123.5 (3)C16—C15—H15A119.7
O2—C1—C2119.5 (3)C17—C16—C15120.3 (3)
O1—C1—C2117.0 (3)C17—C16—H16A119.9
C3—C2—C11118.7 (3)C15—C16—H16A119.9
C3—C2—C1120.8 (2)C16—C17—C18120.9 (3)
C11—C2—C1120.5 (3)C16—C17—H17A119.6
C2—C3—C4121.8 (3)C18—C17—H17A119.6
C2—C3—H3A119.1C19—C18—C13118.7 (3)
C4—C3—H3A119.1C19—C18—C17122.5 (3)
C3—C4—C5122.2 (3)C13—C18—C17118.8 (3)
C3—C4—C9118.9 (3)C20—C19—C18122.4 (2)
C5—C4—C9118.9 (3)C20—C19—H19A118.8
C6—C5—C4121.7 (3)C18—C19—H19A118.8
C6—C5—H5B119.2C19—C20—C22118.7 (2)
C4—C5—H5B119.2C19—C20—C21119.4 (2)
C5—C6—C7119.6 (3)C22—C20—C21121.9 (2)
C5—C6—H6B120.2O4—C21—O3124.5 (3)
C7—C6—H6B120.2O4—C21—C20118.4 (3)
C8—C7—C6120.6 (3)O3—C21—C20117.0 (2)
C8—C7—H7A119.7O6—C22—C12117.9 (2)
C6—C7—H7A119.7O6—C22—C20121.3 (2)
C7—C8—C9121.2 (3)C12—C22—C20120.8 (2)
C7—C8—H8A119.4Zn1—O1W—H1WA119.0
C9—C8—H8A119.4Zn1—O1W—H1WB119.1
C8—C9—C10122.6 (3)H1WA—O1W—H1WB121.9
C8—C9—C4117.9 (3)Zn1—O2W—H2WA105.2
C10—C9—C4119.4 (2)Zn1—O2W—H2WB99.9
C11—C10—C9119.1 (2)H2WA—O2W—H2WB105.6
C11—C10—C12119.1 (2)
O4i—Zn1—O1—C1−126.7 (2)C9—C10—C12—C22102.1 (3)
O3ii—Zn1—O1—C148.7 (3)C11—C10—C12—C13100.1 (3)
O1W—Zn1—O1—C1141.4 (3)C9—C10—C12—C13−79.7 (3)
O2W—Zn1—O1—C1−34.9 (3)C22—C12—C13—C14−179.7 (3)
Zn1—O1—C1—O26.6 (5)C10—C12—C13—C142.1 (4)
Zn1—O1—C1—C2−174.6 (2)C22—C12—C13—C180.4 (4)
O2—C1—C2—C3−175.7 (3)C10—C12—C13—C18−177.7 (3)
O1—C1—C2—C35.3 (4)C18—C13—C14—C150.2 (5)
O2—C1—C2—C115.4 (4)C12—C13—C14—C15−179.7 (3)
O1—C1—C2—C11−173.6 (3)C13—C14—C15—C160.6 (6)
C11—C2—C3—C40.2 (4)C14—C15—C16—C17−1.3 (6)
C1—C2—C3—C4−178.7 (3)C15—C16—C17—C181.2 (6)
C2—C3—C4—C5−178.1 (3)C14—C13—C18—C19177.0 (3)
C2—C3—C4—C90.7 (4)C12—C13—C18—C19−3.1 (4)
C3—C4—C5—C6177.6 (3)C14—C13—C18—C17−0.3 (4)
C9—C4—C5—C6−1.3 (5)C12—C13—C18—C17179.6 (3)
C4—C5—C6—C71.5 (5)C16—C17—C18—C19−177.6 (3)
C5—C6—C7—C80.1 (5)C16—C17—C18—C13−0.4 (5)
C6—C7—C8—C9−2.0 (5)C13—C18—C19—C202.8 (4)
C7—C8—C9—C10−177.4 (3)C17—C18—C19—C20−180.0 (3)
C7—C8—C9—C42.2 (5)C18—C19—C20—C220.2 (4)
C3—C4—C9—C8−179.4 (3)C18—C19—C20—C21−177.1 (3)
C5—C4—C9—C8−0.6 (4)Zn1iii—O4—C21—O3−17.4 (5)
C3—C4—C9—C100.2 (4)Zn1iii—O4—C21—C20161.5 (2)
C5—C4—C9—C10179.0 (3)Zn1ii—O3—C21—O4−24.1 (5)
C8—C9—C10—C11177.6 (3)Zn1ii—O3—C21—C20157.0 (2)
C4—C9—C10—C11−1.9 (4)C19—C20—C21—O417.1 (4)
C8—C9—C10—C12−2.5 (4)C22—C20—C21—O4−160.1 (3)
C4—C9—C10—C12177.9 (3)C19—C20—C21—O3−163.9 (3)
C9—C10—C11—O5−178.0 (3)C22—C20—C21—O318.9 (4)
C12—C10—C11—O52.2 (4)C13—C12—C22—O6−178.4 (2)
C9—C10—C11—C22.9 (4)C10—C12—C22—O6−0.2 (4)
C12—C10—C11—C2−176.9 (3)C13—C12—C22—C202.6 (4)
C3—C2—C11—O5178.8 (3)C10—C12—C22—C20−179.2 (2)
C1—C2—C11—O5−2.3 (4)C19—C20—C22—O6178.1 (2)
C3—C2—C11—C10−2.0 (4)C21—C20—C22—O6−4.7 (4)
C1—C2—C11—C10176.9 (3)C19—C20—C22—C12−3.0 (4)
C11—C10—C12—C22−78.1 (3)C21—C20—C22—C12174.2 (3)

Symmetry codes: (i) x, y, z+1; (ii) −x+1, −y, −z+1; (iii) x, y, z−1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2W—H2WB···O20.852.042.770 (3)144
O2W—H2WA···O5iv0.851.952.719 (3)150
O5—H5A···O20.821.772.517 (3)150
O1W—H1WB···O6v0.852.192.863 (3)136
O6—H6A···O30.821.892.607 (3)146
O1W—H1WA···O2Wvi0.852.323.137 (3)162

Symmetry codes: (iv) x, −y+1/2, z+1/2; (v) x, −y−1/2, z+1/2; (vi) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2697).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SMART , SAINTand SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst.36, 1283–1284.
  • Han, Z.-X., Wang, J.-J., Hu, H.-M., Chen, X.-L., Wu, Q.-R. & Li, D.-S. (2008). J Mol Struct 891, 364–369.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, L.-Y., Liu, G.-F., Zheng, S.-L., Ye, B.-H., Zhang, X.-M. & Chen, X.-M. (2003). Eur J Inorg Chem 16, 2965–2971.
  • Zhang, L.-Y., Zhang, J.-P., Lin, Y.-Y. & Chen, X.-M. (2006). Cryst. Growth Des.6, 1684–1689.
  • Zheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg Chem 43, 830–838. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography