PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o57.
Published online 2009 December 4. doi:  10.1107/S1600536809051290
PMCID: PMC2980018

1-Benzoyl-3,3-dinitro­azetidine

Abstract

In the title gem-dinitro­azetidine derivative, C10H9N3O5, the azetidine ring is almost planar, the maximum value of the endocyclic torsion angle being 0.92 (14)°. The gem-dinitro groups are mutually perpendicular and the dihedral angle between the azetidine and benzene rings is 46.70 (10)°

Related literature

For energetic materials based on 3,3-dinitro­azetidine, see: Archibald et al. (1990 [triangle]); Gao et al. (2009 [triangle]); Hiskey & Coburn (1994a [triangle],b [triangle]); Ma, Yan, Li, Guan et al. (2009 [triangle]); Ma, Yan, Li, Song & Hu (2009 [triangle]); Ma, Yan, Song et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00o57-scheme1.jpg

Experimental

Crystal data

  • C10H9N3O5
  • M r = 251.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00o57-efi1.jpg
  • a = 13.176 (4) Å
  • b = 6.2344 (19) Å
  • c = 13.522 (4) Å
  • β = 92.612 (6)°
  • V = 1109.6 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 296 K
  • 0.39 × 0.27 × 0.15 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.954, T max = 0.981
  • 5306 measured reflections
  • 1975 independent reflections
  • 1210 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.096
  • S = 0.98
  • 1975 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809051290/gk2242sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051290/gk2242Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the National Natural Science Foundation of China (No. 20603026) and the Natural Science Foundation of Shaanxi Province, China (No. 2009JQ2002) for generously supporting this study.

supplementary crystallographic information

Comment

Dinitro- and trinitro-derivatives of azetidine are of interest because they contain strained ring system. This makes them good candidates for energetic materials (propellants or explosives). Initial reports on the synthesis of 1,3,3-trinitroazetidine (TNAZ) included the synthesis of 3,3-dinitroazetidine (DNAZ) in the synthesis pathway (Archibald et al., 1990). However, later on less expensive synthesis of DNAZ was reported (Hiskey et al., 1994a,b). Starting from DNAZ as a substrate a variety of solid energetic compounds can be prepared (Gao et al., 2009; Ma, Yan, Li, Guan et al., 2009; Ma, Yan, Li, Song & Hu, 2009; Ma, Yan, Song et al., 2009). This paper reports synthesis and crystal structure of the title DNAZ derivate.

Experimental

A solution of DNAZ (0.40 g, 2.72 mmol), benzoyl chloride (0.35 ml, 2.99 mmol) and NaHCO3 (0.23 g, 2.72 mmol) in dichloromethane (20.0 ml) was stirred under reflux for 16 h. The reaction mixture was concentrated in vacuo, acetone (30.0 ml) was added, and the mixture was stirred for 30 min, standing, filtered. The solid product was washed with ethanol and purified by recrystallization from dichloromethane to give the pure colorless compound in 81.7% yield. The title compound (52 mg,0.2 mmol) was dissolved in chloroform (10 ml). Colorless crystals were isolated after several days. Elemental analysis calculated for C10H9N3O5: C 47.81, N 16.73, H 3.61%; found: C 47.29, N 16.88, H 3.63%. IR (KBr, cm-1): 3057, 2961, 1640, 1578, 1526, 1335, 1304, 706. 1H NMR (CDCl3): (δdelta/p.p.m.) 7.649 (2H), 7.581 (4H), 7.489 (2H), 5.025 (4H).

Refinement

All H atoms were placed at calculated idealized positions and refined using a riding model, with C—H distances in the range 0.93–0.97 Å.

Figures

Fig. 1.
The molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as spheres of arbitrary radius.

Crystal data

C10H9N3O5F(000) = 520
Mr = 251.20Dx = 1.504 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 862 reflections
a = 13.176 (4) Åθ = 3.0–21.2°
b = 6.2344 (19) ŵ = 0.12 mm1
c = 13.522 (4) ÅT = 296 K
β = 92.612 (6)°Block, colorless
V = 1109.6 (6) Å30.39 × 0.27 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer1975 independent reflections
Radiation source: fine-focus sealed tube1210 reflections with I > 2σ(I)
graphiteRint = 0.028
phi and ω scansθmax = 25.1°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −15→15
Tmin = 0.954, Tmax = 0.981k = −7→7
5306 measured reflectionsl = −15→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.096w = 1/[σ2(Fo2) + (0.0493P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
1975 reflectionsΔρmax = 0.15 e Å3
164 parametersΔρmin = −0.16 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N30.68948 (11)0.3359 (2)0.80874 (11)0.0468 (4)
O50.75063 (10)0.01052 (19)0.84162 (10)0.0599 (4)
O10.75527 (11)0.6527 (2)0.99733 (12)0.0775 (5)
O20.61765 (11)0.8369 (2)1.01338 (11)0.0705 (5)
O30.44932 (11)0.6147 (2)0.89476 (11)0.0713 (5)
O40.52323 (10)0.8514 (2)0.80573 (12)0.0702 (5)
C60.91631 (15)0.0829 (3)0.71825 (16)0.0579 (6)
H60.9293−0.00780.77190.070*
C70.98541 (16)0.0983 (3)0.64582 (19)0.0692 (6)
H71.04510.01880.65100.083*
C80.96726 (16)0.2296 (3)0.56602 (18)0.0654 (6)
H81.01450.23980.51720.078*
C90.87872 (16)0.3464 (3)0.55826 (16)0.0601 (6)
H90.86580.43510.50380.072*
C100.80912 (15)0.3321 (3)0.63113 (14)0.0509 (5)
H100.74940.41150.62550.061*
C50.82730 (13)0.2012 (3)0.71215 (14)0.0439 (5)
C40.75447 (13)0.1743 (3)0.79194 (14)0.0444 (5)
C30.69359 (15)0.5702 (3)0.79507 (14)0.0498 (5)
H3A0.66290.61950.73260.060*
H3B0.76070.63140.80720.060*
C10.62456 (13)0.5904 (3)0.88225 (13)0.0419 (5)
C20.62480 (14)0.3459 (3)0.89365 (14)0.0489 (5)
H2B0.65750.29560.95510.059*
H2A0.55860.28010.88210.059*
N10.66923 (14)0.7057 (3)0.97243 (13)0.0541 (5)
N20.52333 (12)0.6935 (3)0.85921 (13)0.0513 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N30.0634 (10)0.0315 (8)0.0468 (10)0.0014 (7)0.0156 (8)0.0040 (7)
O50.0819 (10)0.0343 (7)0.0641 (9)0.0015 (6)0.0103 (8)0.0088 (7)
O10.0730 (10)0.0680 (10)0.0889 (13)−0.0016 (8)−0.0258 (9)0.0058 (8)
O20.0914 (11)0.0603 (9)0.0607 (10)−0.0037 (8)0.0135 (9)−0.0178 (8)
O30.0565 (9)0.0876 (12)0.0710 (11)0.0034 (8)0.0172 (8)0.0072 (9)
O40.0717 (10)0.0584 (9)0.0800 (11)0.0119 (7)−0.0017 (8)0.0189 (8)
C60.0657 (13)0.0471 (12)0.0611 (14)0.0105 (10)0.0041 (12)0.0029 (10)
C70.0581 (13)0.0652 (14)0.0848 (18)0.0108 (11)0.0108 (13)−0.0071 (13)
C80.0668 (14)0.0598 (13)0.0712 (17)−0.0057 (11)0.0222 (12)−0.0085 (12)
C90.0764 (14)0.0533 (13)0.0513 (13)0.0010 (11)0.0115 (11)0.0033 (10)
C100.0579 (11)0.0497 (12)0.0453 (12)0.0058 (9)0.0050 (10)−0.0012 (10)
C50.0536 (11)0.0324 (10)0.0454 (12)−0.0006 (8)0.0004 (9)−0.0043 (9)
C40.0553 (11)0.0320 (10)0.0454 (11)−0.0013 (9)−0.0008 (9)−0.0019 (9)
C30.0641 (12)0.0355 (10)0.0511 (12)0.0046 (8)0.0147 (10)0.0054 (9)
C10.0495 (11)0.0356 (9)0.0407 (11)0.0024 (8)0.0038 (9)0.0001 (8)
C20.0604 (11)0.0393 (10)0.0477 (12)−0.0017 (9)0.0101 (9)0.0022 (9)
N10.0679 (12)0.0413 (10)0.0528 (11)−0.0070 (9)0.0002 (10)0.0038 (8)
N20.0565 (11)0.0492 (10)0.0482 (10)0.0039 (9)0.0035 (8)−0.0039 (8)

Geometric parameters (Å, °)

N3—C41.348 (2)C8—H80.9300
N3—C21.462 (2)C9—C101.379 (3)
N3—C31.474 (2)C9—H90.9300
O5—C41.224 (2)C10—C51.378 (3)
O1—N11.2134 (19)C10—H100.9300
O2—N11.2133 (18)C5—C41.486 (2)
O3—N21.2109 (19)C3—C11.527 (2)
O4—N21.2212 (19)C3—H3A0.9700
C6—C71.371 (3)C3—H3B0.9700
C6—C51.385 (2)C1—N21.500 (2)
C6—H60.9300C1—N11.511 (2)
C7—C81.367 (3)C1—C21.532 (2)
C7—H70.9300C2—H2B0.9700
C8—C91.375 (3)C2—H2A0.9700
C4—N3—C2124.17 (15)N3—C3—C187.62 (12)
C4—N3—C3133.82 (14)N3—C3—H3A114.0
C2—N3—C394.70 (12)C1—C3—H3A114.0
C7—C6—C5120.6 (2)N3—C3—H3B114.0
C7—C6—H6119.7C1—C3—H3B114.0
C5—C6—H6119.7H3A—C3—H3B111.2
C8—C7—C6120.5 (2)N2—C1—N1105.88 (14)
C8—C7—H7119.7N2—C1—C3115.48 (15)
C6—C7—H7119.7N1—C1—C3116.01 (15)
C7—C8—C9119.7 (2)N2—C1—C2116.42 (14)
C7—C8—H8120.2N1—C1—C2113.13 (15)
C9—C8—H8120.2C3—C1—C289.82 (12)
C8—C9—C10120.0 (2)N3—C2—C187.84 (12)
C8—C9—H9120.0N3—C2—H2B114.0
C10—C9—H9120.0C1—C2—H2B114.0
C5—C10—C9120.60 (18)N3—C2—H2A114.0
C5—C10—H10119.7C1—C2—H2A114.0
C9—C10—H10119.7H2B—C2—H2A111.2
C10—C5—C6118.61 (18)O2—N1—O1126.33 (18)
C10—C5—C4123.34 (16)O2—N1—C1118.88 (17)
C6—C5—C4118.01 (18)O1—N1—C1114.78 (17)
O5—C4—N3119.23 (17)O3—N2—O4125.66 (17)
O5—C4—C5122.48 (16)O3—N2—C1117.90 (16)
N3—C4—C5118.29 (15)O4—N2—C1116.44 (16)
C5—C6—C7—C8−0.5 (3)N3—C3—C1—N1116.69 (15)
C6—C7—C8—C9−0.3 (3)N3—C3—C1—C20.88 (14)
C7—C8—C9—C100.5 (3)C4—N3—C2—C1154.51 (16)
C8—C9—C10—C50.0 (3)C3—N3—C2—C10.92 (14)
C9—C10—C5—C6−0.7 (3)N2—C1—C2—N3117.73 (15)
C9—C10—C5—C4−178.42 (16)N1—C1—C2—N3−119.27 (16)
C7—C6—C5—C100.9 (3)C3—C1—C2—N3−0.88 (14)
C7—C6—C5—C4178.79 (17)N2—C1—N1—O26.0 (2)
C2—N3—C4—O510.7 (3)C3—C1—N1—O2135.59 (16)
C3—N3—C4—O5152.76 (19)C2—C1—N1—O2−122.61 (16)
C2—N3—C4—C5−170.27 (16)N2—C1—N1—O1−174.84 (15)
C3—N3—C4—C5−28.2 (3)C3—C1—N1—O1−45.3 (2)
C10—C5—C4—O5152.40 (18)C2—C1—N1—O156.5 (2)
C6—C5—C4—O5−25.3 (3)N1—C1—N2—O3−92.40 (18)
C10—C5—C4—N3−26.6 (2)C3—C1—N2—O3137.76 (16)
C6—C5—C4—N3155.63 (16)C2—C1—N2—O334.3 (2)
C4—N3—C3—C1−150.25 (19)N1—C1—N2—O487.52 (18)
C2—N3—C3—C1−0.92 (14)C3—C1—N2—O4−42.3 (2)
N3—C3—C1—N2−118.56 (15)C2—C1—N2—O4−145.79 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2242).

References

  • Archibald, T. G., Gilardi, R., Baum, K. & George, C. (1990). J. Org. Chem.55, 2920–2924.
  • Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gao, R., Ma, H. X., Yan, B., Song, J. R. & Wang, Y. H. (2009). Chem. J. Chin. Univ.30, 577–582.
  • Hiskey, M. A. & Coburn, M. D. (1994a). US Patent 5 336 784.
  • Hiskey, M. A. & Coburn, M. D. (1994b). Chem. Abstr.121, 300750s.
  • Ma, H. X., Yan, B., Li, Z. N., Guan, Y. L., Song, J. R., Xu, K. Z. & Hu, R. Z. (2009). J. Hazard. Mater.169, 1068–1073. [PubMed]
  • Ma, H. X., Yan, B., Li, Z. N., Song, J. R. & Hu, R. Z. (2009). J. Therm. Anal. Calorim.95, 437–444.
  • Ma, H. X., Yan, B., Song, J. R., Lü, X. Q. & Wang, L. J. (2009). Chem. J. Chin. Univ.30, 371–381.
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography