PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o52.
Published online 2009 December 4. doi:  10.1107/S1600536809051411
PMCID: PMC2980010

1-[4-(3-Chloro­prop­oxy)-2-hydroxy­phen­yl]ethanone

Abstract

The title compound, C11H13ClO3, has been obtained in the reaction of 2, 4-dihydroxy­lacetonephenone, potassium carbonate and 1-bromo-3-chloro-hexane. The hydr­oxy group is involved in an intra­molecular O—H(...)O hydrogen bond. The crystal packing exhibits no significantly short inter­molecular contacts

Related literature

For background to the Williamson reaction in organic synthesis, see: Dermer (1934 [triangle]). For a related structure, see: Schlemper (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00o52-scheme1.jpg

Experimental

Crystal data

  • C11H13ClO3
  • M r = 228.66
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-00o52-efi1.jpg
  • a = 18.620 (2) Å
  • b = 11.963 (11) Å
  • c = 5.0240 (6) Å
  • V = 1119.1 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.33 mm−1
  • T = 298 K
  • 0.49 × 0.44 × 0.43 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.857, T max = 0.873
  • 4851 measured reflections
  • 1946 independent reflections
  • 1556 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.103
  • S = 1.03
  • 1946 reflections
  • 138 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.19 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 761 Friedel pairs
  • Flack parameter: −0.16 (10)

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809051411/cv2661sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051411/cv2661Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the support of the Foundation of Northwest A&F University.

supplementary crystallographic information

Comment

The Williamson reaction is a very useful transformation in organic synthesis since the products are of value in both industrial and academic applications. It usually involves the employment of an alkali-metal salt of the hydroxy compound and an alkylhalide (Dermer, 1934).

In this paper, we present the title compound, (I), which was synthesized by the reaction of 2, 4-dihydroxylacetonephenone, potassium carbonate and 1-bromo-3-chloro-hexane. In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the related structure (Schlemper, 1986). The dihedral angle between the benzene ring C3-C8 and the plane O3C9C10 is 3.82 (4)°. The crystal packing exhibits no significantly short intermolecular contacts

Experimental

2, 4-Dihydroxylacetonephenone (3 mmol), potassium carbonate (6 mmol), 1-bromo-3-chloro-hexane (3 mmol), and 10 ml acetone were mixed in 50 ml flask. After 4 h stirring at 373 K, the crude product was obtained. The crystals were obtained by recrystallization from n-hexane/ethyl acetate. Elemental analysis: calculated for C11H13ClO3: C 55.96, H 5.17%; found: C 55.88, H 5.25,%.

Refinement

All H atoms were positioned geometrically, with O—H= 0.82 Å, C—H=0.93- 0.97 Å, and refined as riding, with Uiso(H)=1.2–1.5Ueq(C, O).

Figures

Fig. 1.
The molecular structure of (I) with atomic numbering and 30% probability displacement ellipsoids.

Crystal data

C11H13ClO3Dx = 1.357 Mg m3
Mr = 228.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 1957 reflections
a = 18.620 (2) Åθ = 2.2–25.7°
b = 11.963 (11) ŵ = 0.33 mm1
c = 5.0240 (6) ÅT = 298 K
V = 1119.1 (11) Å3Block, colourless
Z = 40.49 × 0.44 × 0.43 mm
F(000) = 480

Data collection

Bruker Smart APEX CCD area-detector diffractometer1946 independent reflections
Radiation source: fine-focus sealed tube1556 reflections with I > 2σ(I)
graphiteRint = 0.054
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −18→22
Tmin = 0.857, Tmax = 0.873k = −9→14
4851 measured reflectionsl = −5→5

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.103w = 1/[σ2(Fo2) + (0.0468P)2 + 0.0435P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1946 reflectionsΔρmax = 0.22 e Å3
138 parametersΔρmin = −0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 761 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.16 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O30.61841 (8)0.94594 (14)−0.1602 (4)0.0460 (5)
O10.81896 (9)1.15126 (15)0.7343 (4)0.0551 (6)
O20.70120 (10)1.19429 (14)0.4881 (5)0.0556 (6)
H20.73201.20120.60360.083*
Cl10.48481 (5)0.70010 (7)−0.1232 (2)0.0753 (3)
C10.89472 (15)0.9967 (2)0.6420 (7)0.0592 (8)
H1A0.92041.02540.79300.089*
H1B0.92500.99960.48750.089*
H1C0.88090.92070.67550.089*
C20.82884 (13)1.0662 (2)0.5953 (6)0.0419 (6)
C30.77663 (12)1.03407 (19)0.3905 (6)0.0356 (6)
C40.71379 (12)1.09934 (19)0.3463 (6)0.0387 (6)
C50.66330 (12)1.06801 (19)0.1590 (6)0.0412 (6)
H50.62271.11190.13210.049*
C60.67293 (12)0.97085 (19)0.0103 (6)0.0363 (6)
C70.73511 (12)0.9060 (2)0.0441 (6)0.0380 (6)
H70.74260.8424−0.05860.046*
C80.78500 (13)0.93830 (19)0.2325 (6)0.0385 (6)
H80.82590.89470.25550.046*
C90.62364 (13)0.8441 (2)−0.3163 (6)0.0445 (7)
H9A0.62830.7797−0.20010.053*
H9B0.66530.8470−0.43200.053*
C100.55550 (14)0.8356 (2)−0.4797 (6)0.0506 (7)
H10A0.55190.9012−0.59230.061*
H10B0.55910.7709−0.59530.061*
C110.48784 (15)0.8259 (2)−0.3180 (7)0.0575 (8)
H11A0.44680.8274−0.43680.069*
H11B0.48430.8899−0.20020.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O30.0445 (9)0.0458 (10)0.0476 (13)0.0035 (8)−0.0070 (9)−0.0095 (10)
O10.0589 (12)0.0490 (11)0.0575 (14)−0.0072 (9)−0.0084 (11)−0.0082 (11)
O20.0588 (12)0.0425 (10)0.0654 (16)0.0090 (9)−0.0098 (11)−0.0183 (10)
Cl10.0772 (5)0.0724 (5)0.0764 (7)−0.0267 (4)−0.0077 (5)0.0137 (6)
C10.0450 (16)0.0682 (18)0.064 (2)0.0023 (12)−0.0129 (17)−0.005 (2)
C20.0448 (13)0.0394 (14)0.0414 (18)−0.0095 (11)−0.0003 (12)0.0055 (14)
C30.0362 (12)0.0317 (12)0.0389 (16)−0.0042 (10)0.0019 (12)0.0060 (12)
C40.0444 (13)0.0289 (11)0.0427 (18)−0.0007 (11)0.0035 (13)−0.0005 (14)
C50.0403 (13)0.0369 (13)0.0463 (18)0.0063 (10)−0.0026 (13)−0.0026 (13)
C60.0392 (13)0.0358 (14)0.0338 (15)−0.0029 (11)0.0041 (12)0.0016 (11)
C70.0449 (14)0.0301 (13)0.0389 (18)0.0003 (11)0.0053 (12)−0.0023 (12)
C80.0390 (13)0.0312 (13)0.0454 (18)0.0021 (10)0.0023 (12)0.0052 (13)
C90.0467 (14)0.0460 (14)0.0408 (18)−0.0031 (11)0.0053 (13)−0.0104 (14)
C100.0570 (16)0.0529 (17)0.0418 (18)−0.0021 (13)−0.0083 (14)−0.0059 (15)
C110.0468 (15)0.0565 (17)0.069 (2)−0.0035 (12)−0.0072 (16)0.0020 (16)

Geometric parameters (Å, °)

O3—C61.361 (3)C5—C61.393 (3)
O3—C91.452 (3)C5—H50.9300
O1—C21.248 (3)C6—C71.404 (3)
O2—C41.361 (3)C7—C81.381 (4)
O2—H20.8200C7—H70.9300
Cl1—C111.796 (3)C8—H80.9300
C1—C21.500 (4)C9—C101.515 (4)
C1—H1A0.9600C9—H9A0.9700
C1—H1B0.9600C9—H9B0.9700
C1—H1C0.9600C10—C111.504 (4)
C2—C31.467 (4)C10—H10A0.9700
C3—C81.402 (4)C10—H10B0.9700
C3—C41.424 (3)C11—H11A0.9700
C4—C51.382 (3)C11—H11B0.9700
C6—O3—C9118.25 (18)C8—C7—H7120.5
C4—O2—H2109.5C6—C7—H7120.5
C2—C1—H1A109.5C7—C8—C3122.8 (2)
C2—C1—H1B109.5C7—C8—H8118.6
H1A—C1—H1B109.5C3—C8—H8118.6
C2—C1—H1C109.5O3—C9—C10107.02 (19)
H1A—C1—H1C109.5O3—C9—H9A110.3
H1B—C1—H1C109.5C10—C9—H9A110.3
O1—C2—C3120.6 (2)O3—C9—H9B110.3
O1—C2—C1119.0 (3)C10—C9—H9B110.3
C3—C2—C1120.4 (2)H9A—C9—H9B108.6
C8—C3—C4116.8 (2)C11—C10—C9114.5 (2)
C8—C3—C2122.5 (2)C11—C10—H10A108.6
C4—C3—C2120.7 (2)C9—C10—H10A108.6
O2—C4—C5117.7 (2)C11—C10—H10B108.6
O2—C4—C3121.2 (2)C9—C10—H10B108.6
C5—C4—C3121.1 (2)H10A—C10—H10B107.6
C4—C5—C6120.3 (2)C10—C11—Cl1112.67 (19)
C4—C5—H5119.9C10—C11—H11A109.1
C6—C5—H5119.9Cl1—C11—H11A109.1
O3—C6—C5115.1 (2)C10—C11—H11B109.1
O3—C6—C7124.8 (2)Cl1—C11—H11B109.1
C5—C6—C7120.1 (2)H11A—C11—H11B107.8
C8—C7—C6118.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.852.570 (3)146

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2661).

References

  • Dermer, O. C. (1934). Chem. Rev.14, 385–430.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Schlemper, E. O. (1986). Acta Cryst. C42, 755–757.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography