PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o208.
Published online 2009 December 19. doi:  10.1107/S1600536809053951
PMCID: PMC2980009

3-(2,4-Dichloro­phen­yl)-2-oxo-1-oxaspiro­[4.5]dec-3-en-4-yl acetate

Abstract

In the title compound, C17H16Cl2O4, the cyclo­hexyl ring displays a chair conformation [the four C atoms are planar with a mean deviation of 0.001 (2) Å and the two C atoms at the flap positions deviate by 0.625 (2) and −0.680 (2) Å from the plane]. The furan ring is planar with a mean deviation of 0.004 (2) Å and forms a dihedral angle of 46.73 (2)° with the benzene ring.

Related literature

For tetronic acid, see: Fischer et al. (1993 [triangle]); Benson et al. (2000 [triangle]). For the chemistry of tetronic acid pesticides, see: BAYER Aktiengesellschaft (1995 [triangle]). For the synthesis and basic structure of the spiro­diclofen derivative, see: Zhao et al. (2009 [triangle]); Zhou et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o208-scheme1.jpg

Experimental

Crystal data

  • C17H16Cl2O4
  • M r = 355.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o208-efi1.jpg
  • a = 14.0705 (5) Å
  • b = 12.9731 (4) Å
  • c = 9.2400 (3) Å
  • β = 90.8920 (10)°
  • V = 1686.45 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.40 mm−1
  • T = 296 K
  • 0.47 × 0.45 × 0.29 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.834, T max = 0.893
  • 16146 measured reflections
  • 3835 independent reflections
  • 2866 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.098
  • S = 1.00
  • 3835 reflections
  • 210 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2006 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809053951/si2227sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053951/si2227Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (No. 30700532) and the Science and Technology Project of Zhejiang Province (No. 2009C21014) for financial support. The authors are grateful to Professor Jianming Gu for the crystal structure analysis.

supplementary crystallographic information

Comment

The chemistry of tetronic acid compounds has being receiving increasing attention in recent years, and references cited therein (Fischer et al.,1993; Benson et al., 2000). Bayer company have developed three tetronic acids pesticides-spirodiclofen, spiromesifen and spirotetramat(BAYER Aktiengesellschaft, 1995). The cyclohexyl chair is linked by the spiro carbon atom to the five membered furan ring and the dichlorophenyl group to form the basic structure of the spirodiclofen derivative (Zhao et al., 2009) resulting in the title compound (I), (Fig. 1) by addition of the acetate group. The furan ring is planar with a mean deviation of 0.004 (2) Å. The dihedral angle between benzene and furan rings is 46.73 (2) °. The cyclohexyl ring displays a chair conformation with the deviations of C9 and C12 being 0.625 (2) and -0.680 (2) Å, respectively. Similar distortions were observed in the structure of a spirodiclofen derivative. (Zhou et al., (2009)). As expected, C7=C15, C8=O1 and C16=O4 are typically double bonds with bond distances of 1.336 (2), 1.201 (2) and 1.183 (2) Å, respectively. In the crystal, the molecules are linked through weak intermolecular contacts of C17—H17B···O1, forming chains running along the c axis.

Experimental

4-hydroxyl-3-(2,4-dichlorophenyl)-1-oxaspiro[4,5]dec- 3-en-2-one(10 mmol 3.12 g) was added to acetic anhydride (35 ml) and the mixture was stirred at reflux for 5 h. Then water (70 ml) was added and the solution was extracted with dichloromethane. The organic layer was dried over Na2SO4. After filtered and concentrated, the organic residue was purified by silica gel column chromatography, eluted with ethyl acetate-petroleum(1:30,v/v) to give a white solid, which was then recrystallized from 95% ethanol to give colourless blocks.

Refinement

H atoms were included in calculated positions and refined using a rinding model, with C—H distances constrained to 0.96 Å for methyl H atoms, 0.93Å for aryl H atoms and 0.97 for the cyclopentane,with O—H distances constrained to 0.820 Å, and with Uiso(H) = 1.2Ueq(C,O).

Figures

Fig. 1.
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C17H16Cl2O4F(000) = 736
Mr = 355.20Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11608 reflections
a = 14.0705 (5) Åθ = 3.1–27.4°
b = 12.9731 (4) ŵ = 0.40 mm1
c = 9.2400 (3) ÅT = 296 K
β = 90.892 (1)°Chunk, colorless
V = 1686.45 (10) Å30.47 × 0.45 × 0.29 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer3835 independent reflections
Radiation source: rotating anode2866 reflections with I > 2σ(I)
graphiteRint = 0.025
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = −17→18
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −16→16
Tmin = 0.834, Tmax = 0.893l = −11→11
16146 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.098w = 1/[σ2(Fo2) + (0.040P)2 + 0.650P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3835 reflectionsΔρmax = 0.22 e Å3
210 parametersΔρmin = −0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0064 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl20.54892 (4)0.47091 (4)0.18788 (5)0.06065 (17)
Cl10.38311 (4)0.75742 (4)0.51693 (6)0.06588 (18)
O20.84926 (8)0.39184 (10)0.46610 (12)0.0476 (3)
O10.75521 (9)0.45025 (11)0.64035 (13)0.0536 (3)
C40.64126 (12)0.56385 (12)0.41374 (17)0.0392 (3)
O30.76541 (10)0.49671 (10)0.13019 (13)0.0549 (3)
C160.74521 (13)0.59698 (16)0.08843 (19)0.0490 (4)
C70.72584 (12)0.49944 (13)0.39001 (17)0.0401 (4)
C60.56414 (13)0.69385 (14)0.5600 (2)0.0500 (4)
H60.56650.74040.63650.060*
C150.77593 (13)0.47332 (13)0.27392 (18)0.0437 (4)
C30.55724 (12)0.55682 (13)0.33197 (17)0.0417 (4)
C10.48284 (12)0.68374 (13)0.4763 (2)0.0462 (4)
C90.85752 (12)0.40299 (14)0.30992 (18)0.0445 (4)
C20.47789 (12)0.61566 (14)0.36203 (18)0.0460 (4)
H20.42250.60940.30640.055*
O40.74584 (11)0.66581 (11)0.17247 (15)0.0626 (4)
C50.64214 (13)0.63370 (14)0.52862 (19)0.0467 (4)
H50.69690.63990.58570.056*
C80.77430 (12)0.44761 (13)0.51412 (18)0.0424 (4)
C140.84764 (13)0.29681 (15)0.2402 (2)0.0522 (4)
H14A0.78920.26490.27180.063*
H14B0.84380.30440.13580.063*
C130.93139 (16)0.22725 (18)0.2799 (3)0.0715 (6)
H13A0.93060.21260.38290.086*
H13B0.92520.16240.22840.086*
C100.95350 (14)0.45228 (17)0.2795 (2)0.0620 (5)
H10A0.95960.51550.33480.074*
H10B0.95640.46990.17760.074*
C111.03604 (15)0.3808 (2)0.3184 (3)0.0772 (7)
H11A1.09540.41270.29070.093*
H11B1.03820.37000.42230.093*
C170.72453 (19)0.6010 (2)−0.0704 (2)0.0764 (7)
H17A0.65800.5890−0.08770.092*
H17B0.76080.5488−0.11840.092*
H17C0.74150.6676−0.10710.092*
C121.02541 (16)0.2775 (2)0.2422 (3)0.0867 (8)
H12A1.07740.23260.27100.104*
H12B1.02820.28760.13830.104*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl20.0609 (3)0.0749 (3)0.0461 (3)−0.0062 (2)−0.0021 (2)−0.0182 (2)
Cl10.0520 (3)0.0588 (3)0.0873 (4)0.0111 (2)0.0151 (2)−0.0012 (3)
O20.0461 (6)0.0517 (7)0.0450 (6)0.0078 (6)−0.0016 (5)−0.0027 (5)
O10.0572 (8)0.0654 (8)0.0381 (6)0.0063 (6)−0.0007 (5)−0.0010 (6)
C40.0433 (8)0.0371 (8)0.0374 (8)−0.0017 (7)0.0032 (7)0.0010 (6)
O30.0725 (9)0.0540 (7)0.0385 (6)0.0110 (7)0.0104 (6)−0.0009 (5)
C160.0452 (9)0.0568 (11)0.0450 (9)0.0032 (8)0.0047 (7)0.0058 (9)
C70.0452 (9)0.0375 (8)0.0374 (8)−0.0028 (7)0.0015 (7)−0.0027 (7)
C60.0523 (10)0.0443 (9)0.0535 (10)−0.0017 (8)0.0075 (8)−0.0110 (8)
C150.0502 (9)0.0409 (9)0.0401 (8)0.0013 (7)0.0035 (7)−0.0017 (7)
C30.0483 (9)0.0428 (9)0.0341 (8)−0.0050 (7)0.0027 (7)0.0017 (7)
C10.0441 (9)0.0409 (9)0.0540 (10)0.0017 (7)0.0110 (8)0.0058 (8)
C90.0434 (9)0.0462 (9)0.0439 (9)0.0007 (7)0.0021 (7)−0.0073 (7)
C20.0423 (9)0.0514 (10)0.0444 (9)−0.0025 (8)0.0017 (7)0.0078 (8)
O40.0823 (10)0.0506 (8)0.0545 (8)0.0025 (7)−0.0065 (7)0.0040 (7)
C50.0449 (9)0.0472 (10)0.0478 (9)−0.0006 (8)−0.0014 (7)−0.0085 (8)
C80.0417 (8)0.0409 (9)0.0445 (9)−0.0021 (7)−0.0019 (7)−0.0037 (7)
C140.0444 (9)0.0498 (10)0.0621 (11)0.0047 (8)−0.0058 (8)−0.0140 (9)
C130.0658 (13)0.0610 (13)0.0869 (16)0.0216 (11)−0.0206 (12)−0.0258 (12)
C100.0538 (11)0.0662 (13)0.0662 (12)−0.0137 (10)0.0109 (10)−0.0151 (10)
C110.0405 (10)0.1057 (19)0.0856 (16)−0.0067 (11)0.0009 (10)−0.0284 (14)
C170.0956 (17)0.0911 (17)0.0426 (10)0.0107 (14)0.0081 (11)0.0080 (11)
C120.0493 (12)0.112 (2)0.0985 (18)0.0272 (13)−0.0115 (12)−0.0418 (16)

Geometric parameters (Å, °)

Cl2—C31.7388 (17)C9—C141.526 (2)
Cl1—C11.7437 (17)C2—H20.9300
O2—C81.359 (2)C5—H50.9300
O2—C91.457 (2)C14—C131.525 (3)
O1—C81.201 (2)C14—H14A0.9700
C4—C51.395 (2)C14—H14B0.9700
C4—C31.396 (2)C13—C121.520 (4)
C4—C71.473 (2)C13—H13A0.9700
O3—C151.368 (2)C13—H13B0.9700
O3—C161.385 (2)C10—C111.525 (3)
C16—O41.183 (2)C10—H10A0.9700
C16—C171.492 (3)C10—H10B0.9700
C7—C151.336 (2)C11—C121.520 (3)
C7—C81.486 (2)C11—H11A0.9700
C6—C11.377 (3)C11—H11B0.9700
C6—C51.381 (2)C17—H17A0.9600
C6—H60.9300C17—H17B0.9600
C15—C91.500 (2)C17—H17C0.9600
C3—C21.384 (2)C12—H12A0.9700
C1—C21.377 (3)C12—H12B0.9700
C9—C101.524 (3)
C8—O2—C9110.17 (12)O2—C8—C7109.76 (14)
C5—C4—C3116.84 (15)C13—C14—C9111.57 (15)
C5—C4—C7118.94 (14)C13—C14—H14A109.3
C3—C4—C7124.16 (15)C9—C14—H14A109.3
C15—O3—C16119.83 (14)C13—C14—H14B109.3
O4—C16—O3121.77 (16)C9—C14—H14B109.3
O4—C16—C17128.21 (19)H14A—C14—H14B108.0
O3—C16—C17110.02 (18)C12—C13—C14111.3 (2)
C15—C7—C4134.48 (15)C12—C13—H13A109.4
C15—C7—C8105.27 (15)C14—C13—H13A109.4
C4—C7—C8120.25 (14)C12—C13—H13B109.4
C1—C6—C5118.93 (16)C14—C13—H13B109.4
C1—C6—H6120.5H13A—C13—H13B108.0
C5—C6—H6120.5C9—C10—C11112.02 (18)
C7—C15—O3132.27 (16)C9—C10—H10A109.2
C7—C15—C9112.81 (15)C11—C10—H10A109.2
O3—C15—C9114.90 (14)C9—C10—H10B109.2
C2—C3—C4122.29 (15)C11—C10—H10B109.2
C2—C3—Cl2117.53 (13)H10A—C10—H10B107.9
C4—C3—Cl2120.18 (13)C12—C11—C10110.95 (17)
C6—C1—C2121.56 (16)C12—C11—H11A109.4
C6—C1—Cl1119.41 (14)C10—C11—H11A109.4
C2—C1—Cl1119.02 (14)C12—C11—H11B109.4
O2—C9—C15101.97 (13)C10—C11—H11B109.4
O2—C9—C10108.00 (14)H11A—C11—H11B108.0
C15—C9—C10112.41 (16)C16—C17—H17A109.5
O2—C9—C14108.69 (15)C16—C17—H17B109.5
C15—C9—C14113.02 (14)H17A—C17—H17B109.5
C10—C9—C14112.08 (15)C16—C17—H17C109.5
C1—C2—C3118.43 (16)H17A—C17—H17C109.5
C1—C2—H2120.8H17B—C17—H17C109.5
C3—C2—H2120.8C11—C12—C13110.58 (18)
C6—C5—C4121.95 (16)C11—C12—H12A109.5
C6—C5—H5119.0C13—C12—H12A109.5
C4—C5—H5119.0C11—C12—H12B109.5
O1—C8—O2121.23 (15)C13—C12—H12B109.5
O1—C8—C7129.01 (16)H12A—C12—H12B108.1
C15—O3—C16—O47.6 (3)C7—C15—C9—C14115.89 (18)
C15—O3—C16—C17−172.61 (17)O3—C15—C9—C14−62.8 (2)
C5—C4—C7—C15−134.5 (2)C6—C1—C2—C3−0.2 (3)
C3—C4—C7—C1548.4 (3)Cl1—C1—C2—C3−179.30 (13)
C5—C4—C7—C844.9 (2)C4—C3—C2—C10.4 (3)
C3—C4—C7—C8−132.16 (17)Cl2—C3—C2—C1179.61 (13)
C4—C7—C15—O3−1.1 (3)C1—C6—C5—C40.7 (3)
C8—C7—C15—O3179.42 (18)C3—C4—C5—C6−0.5 (3)
C4—C7—C15—C9−179.47 (17)C7—C4—C5—C6−177.72 (16)
C8—C7—C15—C91.07 (19)C9—O2—C8—O1−179.13 (16)
C16—O3—C15—C744.5 (3)C9—O2—C8—C70.84 (18)
C16—O3—C15—C9−137.13 (16)C15—C7—C8—O1178.78 (18)
C5—C4—C3—C2−0.1 (2)C4—C7—C8—O1−0.8 (3)
C7—C4—C3—C2177.04 (15)C15—C7—C8—O2−1.19 (19)
C5—C4—C3—Cl2−179.29 (13)C4—C7—C8—O2179.26 (14)
C7—C4—C3—Cl2−2.2 (2)O2—C9—C14—C13−67.2 (2)
C5—C6—C1—C2−0.3 (3)C15—C9—C14—C13−179.60 (18)
C5—C6—C1—Cl1178.78 (14)C10—C9—C14—C1352.1 (2)
C8—O2—C9—C15−0.20 (17)C9—C14—C13—C12−55.0 (2)
C8—O2—C9—C10118.41 (16)O2—C9—C10—C1167.5 (2)
C8—O2—C9—C14−119.78 (15)C15—C9—C10—C11179.18 (16)
C7—C15—C9—O2−0.60 (19)C14—C9—C10—C11−52.2 (2)
O3—C15—C9—O2−179.25 (14)C9—C10—C11—C1254.8 (3)
C7—C15—C9—C10−116.02 (17)C10—C11—C12—C13−57.3 (3)
O3—C15—C9—C1065.3 (2)C14—C13—C12—C1157.6 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2227).

References

  • BAYER Aktiengesellschaft (1995). WO patent No. 9 504 719A1.
  • Benson, D. A., Lipman, D. J., Ostell, J., Rapp, B. A., Wheeler, D. L. & Genbank, N. (2000). Acids Res.28, 15–18. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fischer, R. M., Bretschneider, T. S. & Kruger, B.-W. (1993). US patent No. 5 262 383.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2006). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2007). CrystalStructure Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zhao, J. H., Zhou, Y., Xu, X. H., Cheng, J. L. & Zhu, G. N. (2009). Chin. J. Struct. Chem.28, 837–840.
  • Zhou, Y., Cheng, J.-L., Zhu, G.-N. & Zhao, J.-H. (2009). Acta Cryst. E65, o2992. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography