PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o197.
Published online 2009 December 19. doi:  10.1107/S1600536809054075
PMCID: PMC2979997

Ethyl 6′-amino-5′-cyano-2′-methyl-2-oxospiro­[indoline-3,4′-pyran]-3′-carboxyl­ate

Abstract

In the title compound, C17H15N3O4, the atoms of the spiro pyran ring are nearly planar with a maximum deviation of 0.0188 (14) Å. The benzene and pyrrole rings make a dihedral angle of 5.71 (6)°. The indole system and the pyran ring are oriented at a dihedral angle of 82.94 (3)°. The crystal structure is stabilized by inter­molecular classical and non-classical N—H(...)O, N—H(...)N and C—H(...)O hydrogen bonds.

Related literature

For the indole nucleus, see: da Silva et al. (2001 [triangle]). For the anti­bacterial and fungicidal activities of indoles, see: Joshi & Chand (1982 [triangle]). Spiro­oxindole ring systems are found in a number of alkaloids, e.g. horsifiline, spiro­tryprostatin and elacomine, see: Abdel-Rahman et al. (2004 [triangle]). For our work on the preparation of heterocyclic compounds involving indole derivatives, see: Zhu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o197-scheme1.jpg

Experimental

Crystal data

  • C17H15N3O4
  • M r = 325.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o197-efi1.jpg
  • a = 7.7812 (16) Å
  • b = 19.998 (4) Å
  • c = 10.044 (2) Å
  • β = 103.435 (4)°
  • V = 1520.2 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 153 K
  • 0.60 × 0.30 × 0.24 mm

Data collection

  • Rigaku Mercury diffractometer
  • Absorption correction: multi-scan (ABSCOR; Jacobson, 1998 [triangle]) T min = 0.764, T max = 0.975
  • 14692 measured reflections
  • 2779 independent reflections
  • 2550 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.096
  • S = 1.14
  • 2779 reflections
  • 228 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001 [triangle]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809054075/pv2248sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054075/pv2248Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was partially supported by the Natural Science Foundation of Higher Education Institutions of Jiangsu Province (grant No. 09KJB150012), the Special Presidential Foundation of Xuzhou Medical College (grant No. 09KJZ19) and the Open Foundation of the Key Laboratory of Cancer Biotherapy of Xuzhou Medical College (grant No. C0901).

supplementary crystallographic information

Comment

The indole nucleus is a well known heterocycle (da Silva et al., 2001). Compounds containing the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). Spirooxindole ring systems are found in a number of alkaloids, e.g., horsifiline, spirotryprostatin and elacomine (Abdel-Rahman et al., 2004). As a part of our programme devoted to the preparation of heterocyclic compounds involving indole derivatives (Zhu et al., 2007), we have synthesized a series of spirooxindoles via reactions of isatins together with malononitrile and ethyl 3-oxobutanoate in water. We report herein the crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1), the new formed spiro pyran ring (O1/C1-C5) adopts nearly planar confirmation. Rings (N1/C3/C10/C11/C16) and (C11-C16) of the indole system, are of course planar; the dihedral angle between the mean-planes of the two rings is 5.707 (5)°. The indole system and pyran ring are oriented at a dihedral angle of 82.926 (3)°.

In the crystal structure, intermolecular N—H···O, N—H···N, and C—H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), thus stabilizing the crystal structure.

Experimental

Compound (I) was prepared by the reaction of isatin (1 mmol), malononitrile (1 mmol) and ethyl 3-oxobutanoate (1 mmol) in water (5 ml). The reaction was catalyzed by TEBAC (triethylbenzylammonium chloride, 1 mmol). After stirring at 333 K for 5 h, the reaction mixture was cooled and washed with a small amount of ethanol. The crude product was filtered and single crystals of the title compound were obtained from ethanol solution by slow evaporation at room temperature (yield; 85%, m.p. 510-511 K).

Refinement

H atoms (for NH2) were located in a difference syntheses and refined. The remaining H atoms were positioned geometrically, with N–H = 0.88 Å and C–H = 0.95 and 0.98 Å for aromatic and methyl H and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 45% probability level.
Fig. 2.
A packing diagram of (I) showing hydrogen bonds as dashed lines.

Crystal data

C17H15N3O4F(000) = 680
Mr = 325.32Dx = 1.421 Mg m3
Monoclinic, P21/cMelting point = 511–512 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71070 Å
a = 7.7812 (16) ÅCell parameters from 5549 reflections
b = 19.998 (4) Åθ = 3.1–25.3°
c = 10.044 (2) ŵ = 0.10 mm1
β = 103.435 (4)°T = 153 K
V = 1520.2 (6) Å3Prism, colorless
Z = 40.60 × 0.30 × 0.24 mm

Data collection

Rigaku Mercury diffractometer2779 independent reflections
Radiation source: fine-focus sealed tube2550 reflections with I > 2σ(I)
graphiteRint = 0.026
Detector resolution: 7.31 pixels mm-1θmax = 25.3°, θmin = 3.2°
ω scansh = −8→9
Absorption correction: multi-scan (ABSCOR; Jacobson, 1998)k = −24→24
Tmin = 0.764, Tmax = 0.975l = −12→11
14692 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.14w = 1/[σ2(Fo2) + (0.0403P)2 + 0.642P] where P = (Fo2 + 2Fc2)/3
2779 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Experimental. Spectroscopic analysis: IR (KBr, n, cm-1): 3480, 3372, 3287, 2191, 1721, 1620, 1474, 1381, 1288, 1211, 1072, 756, 679, 625. 1H NMR (400 MHz, DMSO-d6): 10.39 (s, 1H, NH), 7.13-7.18 (m, 3H, NH2 + ArH), 7.03 (d, J = 10.0 Hz, 1H, ArH), 6.90 (t, J = 10.0 Hz, 1H, ArH), 6.77 (d, J = 10.4 Hz, 1H, ArH), 3.71-3.76 (m, 2H, CH2), 0.75 (t, J = 9.6 Hz, 3H, CH3).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.02630 (14)0.40611 (6)0.47320 (10)0.0250 (3)
O2−0.29838 (16)0.31533 (6)0.74767 (13)0.0361 (3)
O3−0.15237 (13)0.38754 (5)0.90531 (10)0.0210 (3)
O40.02295 (14)0.52209 (5)0.82365 (11)0.0220 (3)
N10.21452 (16)0.45913 (6)0.98355 (12)0.0198 (3)
H10.24700.48981.04720.024*
N20.52683 (18)0.47764 (7)0.73427 (15)0.0310 (3)
N30.2201 (2)0.44309 (8)0.42427 (14)0.0266 (3)
H3A0.322 (3)0.4642 (10)0.446 (2)0.039 (6)*
H3B0.144 (3)0.4529 (10)0.343 (2)0.039 (5)*
C1−0.1291 (2)0.38438 (8)0.56013 (15)0.0213 (3)
C2−0.07153 (19)0.38461 (7)0.69607 (15)0.0186 (3)
C30.11176 (19)0.40821 (7)0.76868 (15)0.0172 (3)
C40.21368 (19)0.42787 (7)0.66251 (15)0.0178 (3)
C50.1420 (2)0.42671 (7)0.52598 (15)0.0198 (3)
C6−0.3046 (2)0.36409 (10)0.47479 (18)0.0324 (4)
H6A−0.29580.31930.43740.049*
H6B−0.34170.39600.39950.049*
H6C−0.39160.36370.53130.049*
C7−0.18809 (19)0.35822 (8)0.78223 (16)0.0212 (3)
C8−0.2410 (2)0.35970 (8)1.00633 (16)0.0252 (4)
H8A−0.34780.33470.95930.030*
H8B−0.27820.39631.05980.030*
C9−0.1167 (3)0.31383 (10)1.1002 (2)0.0395 (5)
H9A−0.08010.27781.04670.059*
H9B−0.17620.29471.16730.059*
H9C−0.01250.33901.14790.059*
C100.10541 (19)0.47069 (7)0.86000 (15)0.0167 (3)
C110.26981 (19)0.39209 (8)0.99810 (15)0.0200 (3)
C120.3617 (2)0.35940 (9)1.11389 (17)0.0267 (4)
H120.40290.38251.19790.032*
C130.3917 (2)0.29121 (9)1.10268 (18)0.0312 (4)
H130.45640.26751.18020.037*
C140.3292 (2)0.25720 (9)0.98083 (19)0.0311 (4)
H140.34890.21050.97650.037*
C150.2374 (2)0.29119 (8)0.86432 (17)0.0249 (4)
H150.19480.26810.78050.030*
C160.21024 (19)0.35887 (7)0.87391 (15)0.0185 (3)
C170.3870 (2)0.45422 (8)0.70497 (15)0.0203 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0210 (6)0.0353 (6)0.0174 (5)−0.0048 (5)0.0020 (4)0.0002 (5)
O20.0352 (7)0.0357 (7)0.0425 (7)−0.0195 (6)0.0193 (6)−0.0165 (6)
O30.0192 (6)0.0251 (6)0.0203 (5)−0.0058 (4)0.0075 (4)−0.0010 (4)
O40.0238 (6)0.0198 (6)0.0225 (6)0.0026 (4)0.0055 (5)0.0002 (4)
N10.0194 (7)0.0230 (7)0.0161 (6)−0.0020 (5)0.0021 (5)−0.0028 (5)
N20.0216 (8)0.0377 (8)0.0339 (8)−0.0051 (6)0.0069 (6)0.0020 (6)
N30.0248 (8)0.0378 (8)0.0178 (7)−0.0024 (7)0.0058 (6)0.0023 (6)
C10.0175 (8)0.0226 (8)0.0238 (8)−0.0010 (6)0.0049 (6)−0.0013 (6)
C20.0166 (7)0.0177 (7)0.0214 (8)0.0002 (6)0.0041 (6)−0.0027 (6)
C30.0150 (7)0.0187 (7)0.0183 (7)−0.0005 (6)0.0050 (6)0.0001 (6)
C40.0163 (7)0.0191 (7)0.0185 (7)0.0008 (6)0.0050 (6)−0.0002 (6)
C50.0185 (8)0.0207 (8)0.0202 (8)0.0017 (6)0.0043 (6)−0.0003 (6)
C60.0252 (9)0.0403 (10)0.0281 (9)−0.0073 (8)−0.0010 (7)−0.0021 (8)
C70.0167 (7)0.0200 (8)0.0277 (8)−0.0009 (6)0.0069 (6)−0.0032 (6)
C80.0247 (8)0.0288 (9)0.0264 (8)−0.0073 (7)0.0144 (7)−0.0009 (7)
C90.0426 (11)0.0362 (10)0.0437 (11)−0.0027 (8)0.0185 (9)0.0142 (8)
C100.0147 (7)0.0199 (8)0.0166 (7)−0.0027 (6)0.0061 (6)0.0003 (6)
C110.0143 (7)0.0267 (8)0.0203 (8)0.0002 (6)0.0070 (6)0.0033 (6)
C120.0173 (8)0.0415 (10)0.0215 (8)0.0019 (7)0.0052 (6)0.0086 (7)
C130.0195 (8)0.0427 (10)0.0339 (10)0.0086 (7)0.0111 (7)0.0188 (8)
C140.0245 (9)0.0264 (9)0.0465 (11)0.0098 (7)0.0163 (8)0.0131 (8)
C150.0212 (8)0.0245 (8)0.0319 (9)0.0021 (6)0.0121 (7)0.0011 (7)
C160.0138 (7)0.0227 (8)0.0204 (8)−0.0002 (6)0.0072 (6)0.0024 (6)
C170.0209 (8)0.0242 (8)0.0167 (7)0.0022 (6)0.0059 (6)0.0024 (6)

Geometric parameters (Å, °)

O1—C51.3577 (19)C4—C171.418 (2)
O1—C11.3840 (19)C6—H6A0.9800
O2—C71.2058 (19)C6—H6B0.9800
O3—C71.3378 (19)C6—H6C0.9800
O3—C81.4631 (18)C8—C91.497 (3)
O4—C101.2218 (18)C8—H8A0.9900
N1—C101.3508 (19)C8—H8B0.9900
N1—C111.405 (2)C9—H9A0.9800
N1—H10.8800C9—H9B0.9800
N2—C171.158 (2)C9—H9C0.9800
N3—C51.345 (2)C11—C121.380 (2)
N3—H3A0.88 (2)C11—C161.394 (2)
N3—H3B0.91 (2)C12—C131.392 (3)
C1—C21.334 (2)C12—H120.9500
C1—C61.490 (2)C13—C141.386 (3)
C2—C71.488 (2)C13—H130.9500
C2—C31.518 (2)C14—C151.397 (2)
C3—C161.517 (2)C14—H140.9500
C3—C41.521 (2)C15—C161.377 (2)
C3—C101.558 (2)C15—H150.9500
C4—C51.355 (2)
C5—O1—C1119.69 (11)O3—C8—C9109.26 (13)
C7—O3—C8116.35 (12)O3—C8—H8A109.8
C10—N1—C11111.76 (12)C9—C8—H8A109.8
C10—N1—H1124.1O3—C8—H8B109.8
C11—N1—H1124.1C9—C8—H8B109.8
C5—N3—H3A118.2 (13)H8A—C8—H8B108.3
C5—N3—H3B114.7 (13)C8—C9—H9A109.5
H3A—N3—H3B118.5 (19)C8—C9—H9B109.5
C2—C1—O1122.60 (13)H9A—C9—H9B109.5
C2—C1—C6129.37 (14)C8—C9—H9C109.5
O1—C1—C6108.01 (13)H9A—C9—H9C109.5
C1—C2—C7119.26 (14)H9B—C9—H9C109.5
C1—C2—C3123.16 (13)O4—C10—N1126.37 (14)
C7—C2—C3117.53 (13)O4—C10—C3125.82 (13)
C16—C3—C2113.49 (12)N1—C10—C3107.73 (12)
C16—C3—C4113.29 (12)C12—C11—C16121.85 (15)
C2—C3—C4109.16 (12)C12—C11—N1128.74 (15)
C16—C3—C10101.03 (12)C16—C11—N1109.36 (13)
C2—C3—C10112.18 (12)C11—C12—C13117.36 (16)
C4—C3—C10107.37 (11)C11—C12—H12121.3
C5—C4—C17116.72 (13)C13—C12—H12121.3
C5—C4—C3123.09 (13)C14—C13—C12121.40 (15)
C17—C4—C3119.97 (13)C14—C13—H13119.3
N3—C5—C4127.76 (14)C12—C13—H13119.3
N3—C5—O1110.01 (13)C13—C14—C15120.47 (16)
C4—C5—O1122.21 (13)C13—C14—H14119.8
C1—C6—H6A109.5C15—C14—H14119.8
C1—C6—H6B109.5C16—C15—C14118.46 (16)
H6A—C6—H6B109.5C16—C15—H15120.8
C1—C6—H6C109.5C14—C15—H15120.8
H6A—C6—H6C109.5C15—C16—C11120.43 (14)
H6B—C6—H6C109.5C15—C16—C3130.66 (14)
O2—C7—O3123.98 (14)C11—C16—C3108.82 (13)
O2—C7—C2125.02 (14)N2—C17—C4176.79 (16)
O3—C7—C2110.98 (12)
C5—O1—C1—C22.1 (2)C3—C2—C7—O330.15 (18)
C5—O1—C1—C6−179.13 (13)C7—O3—C8—C998.97 (16)
O1—C1—C2—C7−177.92 (13)C11—N1—C10—O4172.10 (14)
C6—C1—C2—C73.6 (3)C11—N1—C10—C3−11.17 (16)
O1—C1—C2—C3−0.4 (2)C16—C3—C10—O4−172.22 (14)
C6—C1—C2—C3−178.80 (15)C2—C3—C10—O4−51.02 (19)
C1—C2—C3—C16−129.44 (15)C4—C3—C10—O468.90 (18)
C7—C2—C3—C1648.16 (17)C16—C3—C10—N111.03 (14)
C1—C2—C3—C4−2.1 (2)C2—C3—C10—N1132.23 (13)
C7—C2—C3—C4175.55 (12)C4—C3—C10—N1−107.85 (13)
C1—C2—C3—C10116.82 (16)C10—N1—C11—C12−170.85 (15)
C7—C2—C3—C10−65.58 (16)C10—N1—C11—C166.45 (17)
C16—C3—C4—C5130.57 (15)C16—C11—C12—C13−0.6 (2)
C2—C3—C4—C53.1 (2)N1—C11—C12—C13176.36 (14)
C10—C3—C4—C5−118.77 (15)C11—C12—C13—C14−1.1 (2)
C16—C3—C4—C17−54.99 (18)C12—C13—C14—C151.6 (2)
C2—C3—C4—C17177.50 (13)C13—C14—C15—C16−0.3 (2)
C10—C3—C4—C1755.67 (17)C14—C15—C16—C11−1.4 (2)
C17—C4—C5—N35.3 (2)C14—C15—C16—C3−177.64 (14)
C3—C4—C5—N3179.89 (15)C12—C11—C16—C151.9 (2)
C17—C4—C5—O1−176.31 (13)N1—C11—C16—C15−175.60 (13)
C3—C4—C5—O1−1.7 (2)C12—C11—C16—C3178.90 (13)
C1—O1—C5—N3177.58 (13)N1—C11—C16—C31.38 (16)
C1—O1—C5—C4−1.1 (2)C2—C3—C16—C1549.0 (2)
C8—O3—C7—O26.8 (2)C4—C3—C16—C15−76.2 (2)
C8—O3—C7—C2−172.00 (12)C10—C3—C16—C15169.28 (15)
C1—C2—C7—O229.0 (2)C2—C3—C16—C11−127.57 (13)
C3—C2—C7—O2−148.67 (16)C4—C3—C16—C11107.22 (14)
C1—C2—C7—O3−152.16 (14)C10—C3—C16—C11−7.30 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.882.563.321 (2)146
N1—H1···O3ii0.882.643.337 (2)137
N3—H3A···N2iii0.88 (2)2.64 (2)3.223 (2)124 (2)
N3—H3B···O4iv0.91 (2)1.93 (2)2.841 (2)177 (2)
C13—H13···O2v0.952.503.293 (2)141

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+1, −z+2; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z+1; (v) x+1, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2248).

References

  • Abdel-Rahman, A. H., Keshk, E. M., Hanna, M. A. & El-Bady, Sh. M. (2004). Bioorg. Med. Chem.12, 2483–2488. [PubMed]
  • Jacobson, R. (1998). ABSCOR Private communication to the Rigaku Corporation, Tokyo, Japan.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Joshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1–12. [PubMed]
  • Rigaku/MSC (2001). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc.12, 273–324.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zhu, S. L., Ji, S. J. & Zhang, Y. (2007). Tetrahedron, 63, 9365–9372.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography