PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): o15.
Published online 2009 December 4. doi:  10.1107/S1600536809051174
PMCID: PMC2979993

N-(2,5-Dimethyl­phen­yl)-4-methyl­benzene­sulfonamide

Abstract

In the crystal structure of the title compound, C15H17NO2S, the conformation of the N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the S=O bonds. The mol­ecule is bent at the S atom with a C—SO2—NH—C torsion angle of −61.0 (2)°. The dihedral angle between the two aromatic rings is 49.4 (1)°. The crystal structure features inversion-related dimers linked by pairs of N—H(...)O hydrogen bonds.

Related literature

For our study of the effects of substituents on the structures of N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2009a [triangle],b [triangle]). For related structures, see: Gelbrich et al. (2007 [triangle]); Perlovich et al. (2006 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-66-00o15-scheme1.jpg

Experimental

Crystal data

  • C15H17NO2S
  • M r = 275.36
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00o15-efi1.jpg
  • a = 8.6397 (7) Å
  • b = 9.7067 (8) Å
  • c = 10.518 (1) Å
  • α = 66.97 (1)°
  • β = 81.37 (1)°
  • γ = 64.82 (1)°
  • V = 734.47 (11) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 1.94 mm−1
  • T = 299 K
  • 0.50 × 0.30 × 0.08 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scans (North et al., 1968 [triangle]) T min = 0.444, T max = 0.861
  • 3926 measured reflections
  • 2603 independent reflections
  • 2324 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.140
  • S = 1.18
  • 2603 reflections
  • 176 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809051174/ng2695sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051174/ng2695Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2009a,b), in the present work, the structure of 4-methyl-N-(2,5-dimethylphenyl)benzenesulfonamide (I) has been determined. The conformation of the N—C bond in the C—SO2—NH—C segment of the structure has gauche torsions with respect to the S═O bonds (Fig. 1). The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of -61.0 (2)°, compared to the values of -61.8 (2)° in 4-methyl-N-(3,4-dimethylphenyl)benzenesulfonamide (II), -51.6 (3)° in 4-Methyl-N-(phenyl)benzenesulfonamide (III) (Gowda et al., 2009b) and 62.7 (2)° in N-(2,5-dimethylphenyl)benzenesulfonamide (IV) (Gowda et al., 2009a). The two benzene rings in (I) are tilted relative to each other by 49.4 (1)°, compared to the values of 47.8 (1)° in (II), 68.4 (1)° in (III) and 40.4 (1)° in (IV). The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The pairs of N—H···O hydrogen bonds (Table 1) pack the molecules into infinite chains parallel to the c-axis (Fig. 2).

Experimental

The solution of toluene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-methylbenzenesulfonylchloride was treated with 2,5-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant 4-methyl-N-(2,5-dimethylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement

The H atoms were positioned with idealized geometry using a riding model [N—H = 0.86 Å, C—H = 0.93–0.96 Å] and were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C15H17NO2SZ = 2
Mr = 275.36F(000) = 292
Triclinic, P1Dx = 1.245 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 8.6397 (7) ÅCell parameters from 25 reflections
b = 9.7067 (8) Åθ = 7.2–23.8°
c = 10.518 (1) ŵ = 1.94 mm1
α = 66.97 (1)°T = 299 K
β = 81.37 (1)°Prism, colourless
γ = 64.82 (1)°0.50 × 0.30 × 0.08 mm
V = 734.47 (11) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer2324 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
graphiteθmax = 66.9°, θmin = 4.6°
ω/2θ scansh = −10→4
Absorption correction: ψ scan (North et al., 1968)k = −11→11
Tmin = 0.444, Tmax = 0.861l = −12→12
3926 measured reflections3 standard reflections every 120 min
2603 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.140w = 1/[σ2(Fo2) + (0.0683P)2 + 0.2017P] where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
2603 reflectionsΔρmax = 0.39 e Å3
176 parametersΔρmin = −0.46 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0133 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S11.05078 (6)−0.00156 (6)0.20853 (5)0.0456 (2)
O11.1338 (2)0.0247 (2)0.07776 (16)0.0591 (5)
O21.1518 (2)−0.0780 (2)0.33191 (16)0.0560 (4)
N10.9516 (2)−0.1130 (2)0.21337 (18)0.0487 (5)
H1N0.9621−0.14560.14620.058*
C10.8925 (3)0.1869 (3)0.2088 (2)0.0451 (5)
C20.8295 (4)0.3162 (3)0.0855 (3)0.0646 (7)
H20.87390.30630.00180.078*
C30.6998 (4)0.4602 (3)0.0887 (3)0.0761 (8)
H30.65680.54710.00580.091*
C40.6323 (4)0.4792 (3)0.2106 (3)0.0651 (7)
C50.6989 (3)0.3478 (3)0.3329 (3)0.0574 (6)
H50.65540.35830.41660.069*
C60.8281 (3)0.2021 (3)0.3331 (2)0.0494 (5)
H60.87130.11510.41590.059*
C70.8463 (3)−0.1581 (3)0.3284 (2)0.0464 (5)
C80.6706 (3)−0.0938 (3)0.3112 (3)0.0565 (6)
C90.5788 (4)−0.1463 (4)0.4267 (3)0.0734 (8)
H90.4606−0.10730.41880.088*
C100.6579 (4)−0.2540 (4)0.5520 (3)0.0726 (8)
H100.5918−0.28500.62700.087*
C110.8321 (4)−0.3172 (3)0.5696 (2)0.0591 (6)
C120.9274 (3)−0.2698 (3)0.4553 (2)0.0530 (6)
H121.0459−0.31260.46330.064*
C130.4892 (5)0.6354 (4)0.2132 (4)0.0963 (11)
H13A0.42270.68980.12900.116*
H13B0.53590.70520.22180.116*
H13C0.41750.61120.29030.116*
C140.5794 (4)0.0286 (4)0.1766 (3)0.0760 (8)
H14A0.6140−0.02050.10800.091*
H14B0.60790.12180.14720.091*
H14C0.45810.06280.18870.091*
C150.9181 (5)−0.4357 (4)0.7079 (3)0.0797 (9)
H15A0.8746−0.51950.74570.096*
H15B0.8949−0.37840.76970.096*
H15C1.0393−0.48470.69620.096*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0435 (3)0.0545 (3)0.0279 (3)−0.0142 (2)0.0042 (2)−0.0118 (2)
O10.0546 (9)0.0812 (11)0.0335 (9)−0.0253 (9)0.0123 (7)−0.0194 (8)
O20.0487 (8)0.0694 (10)0.0350 (8)−0.0145 (8)−0.0046 (6)−0.0129 (7)
N10.0570 (10)0.0528 (10)0.0319 (9)−0.0178 (9)0.0057 (8)−0.0176 (8)
C10.0474 (11)0.0474 (11)0.0330 (11)−0.0172 (9)0.0009 (8)−0.0095 (9)
C20.0807 (17)0.0568 (14)0.0341 (12)−0.0163 (13)−0.0006 (11)−0.0066 (10)
C30.094 (2)0.0539 (14)0.0496 (16)−0.0122 (14)−0.0125 (14)−0.0029 (12)
C40.0660 (15)0.0511 (13)0.0680 (18)−0.0148 (12)−0.0039 (13)−0.0195 (12)
C50.0587 (14)0.0623 (14)0.0497 (14)−0.0194 (12)0.0053 (11)−0.0258 (11)
C60.0531 (12)0.0530 (12)0.0331 (11)−0.0165 (10)0.0011 (9)−0.0124 (9)
C70.0575 (12)0.0447 (11)0.0351 (11)−0.0198 (10)0.0058 (9)−0.0153 (9)
C80.0596 (14)0.0594 (13)0.0472 (14)−0.0244 (11)0.0038 (11)−0.0168 (11)
C90.0642 (16)0.090 (2)0.0663 (19)−0.0395 (16)0.0140 (14)−0.0240 (16)
C100.087 (2)0.088 (2)0.0515 (16)−0.0551 (17)0.0204 (14)−0.0198 (14)
C110.0856 (18)0.0582 (14)0.0406 (13)−0.0417 (13)0.0075 (12)−0.0133 (11)
C120.0652 (14)0.0490 (12)0.0391 (12)−0.0226 (11)0.0016 (10)−0.0112 (10)
C130.097 (2)0.0616 (17)0.103 (3)−0.0021 (17)−0.011 (2)−0.0308 (18)
C140.0570 (15)0.088 (2)0.0616 (17)−0.0218 (14)−0.0052 (13)−0.0117 (15)
C150.122 (3)0.0820 (19)0.0410 (15)−0.063 (2)−0.0003 (15)−0.0031 (13)

Geometric parameters (Å, °)

S1—O21.4256 (16)C8—C91.391 (4)
S1—O11.4341 (15)C8—C141.503 (4)
S1—N11.625 (2)C9—C101.371 (4)
S1—C11.758 (2)C9—H90.9300
N1—C71.442 (3)C10—C111.373 (4)
N1—H1N0.8600C10—H100.9300
C1—C61.379 (3)C11—C121.388 (3)
C1—C21.382 (3)C11—C151.510 (4)
C2—C31.379 (4)C12—H120.9300
C2—H20.9300C13—H13A0.9600
C3—C41.374 (4)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.388 (4)C14—H14A0.9600
C4—C131.502 (4)C14—H14B0.9600
C5—C61.380 (3)C14—H14C0.9600
C5—H50.9300C15—H15A0.9600
C6—H60.9300C15—H15B0.9600
C7—C81.384 (3)C15—H15C0.9600
C7—C121.396 (3)
O2—S1—O1118.99 (10)C9—C8—C14120.5 (2)
O2—S1—N1108.50 (10)C10—C9—C8121.8 (3)
O1—S1—N1105.30 (10)C10—C9—H9119.1
O2—S1—C1107.99 (10)C8—C9—H9119.1
O1—S1—C1108.74 (10)C9—C10—C11121.7 (2)
N1—S1—C1106.69 (10)C9—C10—H10119.1
C7—N1—S1121.11 (15)C11—C10—H10119.1
C7—N1—H1N119.4C10—C11—C12117.7 (2)
S1—N1—H1N119.4C10—C11—C15121.4 (3)
C6—C1—C2120.6 (2)C12—C11—C15120.9 (3)
C6—C1—S1119.18 (17)C11—C12—C7120.4 (2)
C2—C1—S1120.17 (18)C11—C12—H12119.8
C3—C2—C1118.9 (2)C7—C12—H12119.8
C3—C2—H2120.6C4—C13—H13A109.5
C1—C2—H2120.6C4—C13—H13B109.5
C4—C3—C2122.0 (2)H13A—C13—H13B109.5
C4—C3—H3119.0C4—C13—H13C109.5
C2—C3—H3119.0H13A—C13—H13C109.5
C3—C4—C5117.9 (2)H13B—C13—H13C109.5
C3—C4—C13121.7 (3)C8—C14—H14A109.5
C5—C4—C13120.4 (3)C8—C14—H14B109.5
C6—C5—C4121.5 (2)H14A—C14—H14B109.5
C6—C5—H5119.3C8—C14—H14C109.5
C4—C5—H5119.3H14A—C14—H14C109.5
C1—C6—C5119.2 (2)H14B—C14—H14C109.5
C1—C6—H6120.4C11—C15—H15A109.5
C5—C6—H6120.4C11—C15—H15B109.5
C8—C7—C12121.7 (2)H15A—C15—H15B109.5
C8—C7—N1120.3 (2)C11—C15—H15C109.5
C12—C7—N1118.0 (2)H15A—C15—H15C109.5
C7—C8—C9116.6 (2)H15B—C15—H15C109.5
C7—C8—C14122.9 (2)
O2—S1—N1—C754.45 (18)S1—C1—C6—C5−177.31 (18)
O1—S1—N1—C7−177.12 (16)C4—C5—C6—C10.1 (4)
C1—S1—N1—C7−61.67 (18)S1—N1—C7—C8111.3 (2)
O2—S1—C1—C6−31.9 (2)S1—N1—C7—C12−69.9 (2)
O1—S1—C1—C6−162.32 (18)C12—C7—C8—C9−0.1 (4)
N1—S1—C1—C684.6 (2)N1—C7—C8—C9178.7 (2)
O2—S1—C1—C2150.3 (2)C12—C7—C8—C14178.9 (3)
O1—S1—C1—C219.9 (2)N1—C7—C8—C14−2.3 (4)
N1—S1—C1—C2−93.2 (2)C7—C8—C9—C101.1 (4)
C6—C1—C2—C3−0.7 (4)C14—C8—C9—C10−177.9 (3)
S1—C1—C2—C3177.0 (2)C8—C9—C10—C11−0.7 (5)
C1—C2—C3—C40.4 (5)C9—C10—C11—C12−0.7 (4)
C2—C3—C4—C50.1 (5)C9—C10—C11—C15−180.0 (3)
C2—C3—C4—C13−179.0 (3)C10—C11—C12—C71.7 (4)
C3—C4—C5—C6−0.4 (4)C15—C11—C12—C7−179.0 (2)
C13—C4—C5—C6178.8 (3)C8—C7—C12—C11−1.3 (4)
C2—C1—C6—C50.5 (4)N1—C7—C12—C11179.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.282.957 (2)135

Symmetry codes: (i) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2695).

References

  • Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009a). Acta Cryst. E65, o2763. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o1219. [PMC free article] [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography