PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 January 1; 66(Pt 1): m103–m104.
Published online 2009 December 24. doi:  10.1107/S1600536809054580
PMCID: PMC2979990

Tris(ethane-1,2-diamine-κ2 N,N′)nickel(II) diiodide

Abstract

The title compound, [Ni(C2H8N2)3]I2, crystallizes with an [Ni(en)3 2+] cation (en is ethane-1,2-diamine) and two iodide ions in the asymmetric unit. Two of the en ligands surrrounding the Ni2+ ion have disordered C atoms, while the third exhibits extensive weak N—H(...)I inter­actions with the two iodide ions that extend throughout the crystalline lattice, producing an infinite network along (011).

Related literature

For related structures, see: Cramer et al. (1976 [triangle]); Cramer & Huneke (1978 [triangle]); Korp et al. (1980 [triangle]); Raston et al. (1978 [triangle]); Swink & Atoji (1960 [triangle]); Wieczorrek (2000 [triangle]). For double salts, see: Alvarado et al. (2009 [triangle]); Brewer et al. (2007 [triangle]); Dvorkin et al. (1989 [triangle], 1991 [triangle]); Farago et al. (1967 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m103-scheme1.jpg

Experimental

Crystal data

  • [Ni(C2H8N2)3]I2
  • M r = 492.82
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m103-efi1.jpg
  • a = 14.7502 (6) Å
  • b = 13.4881 (4) Å
  • c = 15.9624 (7) Å
  • V = 3175.8 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 5.10 mm−1
  • T = 200 K
  • 0.55 × 0.47 × 0.38 mm

Data collection

  • Oxford Diffraction Gemini R Mo diffractometer
  • Absorption correction: multi-scan CrysAlis RED (Oxford Diffraction, 2009 [triangle]) T min = 0.337, T max = 1.000
  • 19070 measured reflections
  • 5271 independent reflections
  • 2835 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.091
  • S = 0.96
  • 5271 reflections
  • 161 parameters
  • 36 restraints
  • H-atom parameters constrained
  • Δρmax = 1.65 e Å−3
  • Δρmin = −1.09 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809054580/pb2013sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054580/pb2013Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Recent work has shown that an iron(II) Schiff base complex of tris(2-aminoethyl)amine(tren) with imidazole-2-carboxaldehyde form double salts with metal (K+, Rb+, Cs+ and NH4+) perchlorates (Brewer et al., 2007) and metal (M = Na+, K+, Rb+, Cs+ and NH4+) tetrafluoroborates (Alvarado et al., 2009). Thus this system shows size selectivity for alkali metal cations. Structural studies of the thiocyanate salts reveal a linear polymeric anion, [(M(SCN)3)2-]n. [Ni(en)3]2+ and [Zn(en)3]2+ react with MX (M = K+ or NH4+, X=SCN- or SeCN-–) to form double salts, [Ni(en)3](SCN)2.NH4(SCN) (Dvorkin et al., 1991) and [Ni(en)3](SeCN)2.K(SeCN) (Farago et al., 1967) or [Zn(en)3](SCN)2.K(SCN) (Dvorkin et al., 1989). Many of these structures also reveal a linear polymeric anion, [(MX3)2-]n (X=ClO4- or BF4–), similar to that observed above suggesting that anions of this type are stable in certain settings and may be used in other reactions. The anions in all of the above complexes are tethered to the cations through hydogen bonds involving either amine, –NH2 or the bidentate hydrogen bonding donor, -N=Cimine(H)—Cimidazole—Nimidazole(H). In an effort to determine the nature of the interactions between the amine, –NH2 (in the cation building unit used in the formation of double salts) and the anion in stabilizing these salts we report the crystal structure of the title compound, C6H24N6NiI2, (I).

C6H24N6NiI2, (I), crystallizes with a [Ni(en)32+] cation and two I_ ions in the asymmetric unit (Fig. 1). In the cation, two of the 1,2-ethanediamine-N,N' rings surrrounding the Ni2+ ion contain disordered carbon and nitrogen atoms while the third exhibits extensive weak N—H···I interactions with the two iodide ions (Table 1) that extend throughout the crystalline lattice producing an infinite network along the (011) plane of the unit cell (Fig. 2). The major components of the two disordered 5-membered Ni2+-1,2-ethanediamine-N,N' rings adopt sightly distorted half-chair conformations (Cremer & Pople, 1975) with puckering parameters Q(2), and Phi(2) of 0.403 (2) Å, 86.767 (6)° (ring 11 = Ni/N11/C11A/C12A/N12; 0.744) and 0.423 (5) Å, 82.357 (0)° (ring 21 = Ni/N21/C21A/C22A/N22; 0.684), respectively. The Q(2), and Phi(2) values for ring 31 (Ni/N31/C31/C32/N32) are 0.438 (4)Å and 270.967 (6)°. For an ideal half-chair, Phi(2) = k x 36° + 18° or 180° + Phi(2). The dihedral angle between the mean planes of the normal ring (31) and the major components of the disordered rings (11 & 21) measures 85.6 (8)° and 83.5 (0)°, while between rings 11 and 21 themselves is 87.2 (7)°. Bond distances within the cation are normal (Allen et al., 2002) and comparable to those in similar structures (Dvorkin et al., 1989, 1991; Farago et al., 1967; Cramer et al. 1976; Cramer & Huneke, 1978).

The presence of I1 and I2 in the crystal lattice allows for the formation of a collection of weak intermolecular N–H···I interactions which thereby influences crystal stability (Table 1).

Experimental

Nickel(II) chloride hexahydrate was dissolved in water and excess ethylenediamine was added to the green solution. The resulting violet/purple solution was allowed to go to dryness. The crude [Ni(en)3]Cl2 was redissolved in water saturated with potassium iodide. The dark blockish crystals suitable for x-ray studies, in space group Pbca, were collected by filtration on standing.

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with N—H = 0.93 Å, C—H = 0.95–0.99 Å, and with Uiso(H) = 1.18–1.51Ueq(C,N).

Figures

Fig. 1.
Molecular structure of the title compound, C6H24N6NiI2, showing the [Ni(en)32+] cation and two I_ ions in the asymmetric unit, the atom labeling scheme and 50% probability displacement ellipsoids. Only the major components of disordered carbon atoms (C11A, ...
Fig. 2.
Packing diagram of the title compound, (I), viewed down the a axis. Dashed lines indicate weak intermolecular N—H···I interactions which produces a infinite weak bonding network arranged along the (011) plane of the unit ...

Crystal data

[Ni(C2H8N2)3]I2F(000) = 1888
Mr = 492.82Dx = 2.061 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8584 reflections
a = 14.7502 (6) Åθ = 4.6–32.4°
b = 13.4881 (4) ŵ = 5.10 mm1
c = 15.9624 (7) ÅT = 200 K
V = 3175.8 (2) Å3Prism, pale purple
Z = 80.55 × 0.47 × 0.38 mm

Data collection

Oxford Diffraction Gemini R Mo diffractometer5271 independent reflections
Radiation source: Enhance (Mo) X-ray Source2835 reflections with I > 2σ(I)
graphiteRint = 0.042
Detector resolution: 10.5081 pixels mm-1θmax = 32.5°, θmin = 4.6°
ω scansh = −21→19
Absorption correction: multi-scan CrysAlis RED (Oxford Diffraction, 2009)k = −10→19
Tmin = 0.337, Tmax = 1.000l = −24→16
19070 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 0.96w = 1/[σ2(Fo2) + (0.043P)2] where P = (Fo2 + 2Fc2)/3
5271 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 1.65 e Å3
36 restraintsΔρmin = −1.09 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
I10.611433 (17)0.132498 (19)0.122134 (16)0.03800 (7)
I20.362274 (19)0.435966 (17)0.131522 (15)0.03860 (7)
Ni0.42318 (3)0.25520 (3)0.37608 (3)0.02275 (10)
N310.4175 (2)0.20616 (19)0.25125 (19)0.0332 (7)
H31A0.39590.25610.21740.040*
H31B0.47460.18910.23310.040*
N320.3624 (2)0.11503 (19)0.39826 (18)0.0293 (7)
H32A0.39020.08420.44280.035*
H32B0.30190.12280.41060.035*
C310.3571 (3)0.1199 (3)0.2463 (2)0.0391 (9)
H31C0.36960.08210.19440.047*
H31D0.29310.14190.24500.047*
C320.3731 (3)0.0550 (2)0.3218 (2)0.0358 (9)
H32C0.3291−0.00050.32220.043*
H32D0.43500.02670.31960.043*
N11A0.5571 (3)0.2044 (3)0.4045 (3)0.0245 (10)0.707 (4)
H11A0.56820.21020.46110.029*0.707 (4)
H11B0.56340.13890.38960.029*0.707 (4)
C11A0.6215 (5)0.2661 (5)0.3569 (5)0.0366 (12)0.707 (4)
H11C0.62150.24660.29720.044*0.707 (4)
H11D0.68360.25790.37930.044*0.707 (4)
C12A0.5913 (4)0.3713 (4)0.3662 (4)0.0398 (13)0.707 (4)
H12A0.59800.39210.42540.048*0.707 (4)
H12B0.63020.41470.33140.048*0.707 (4)
N12A0.4962 (4)0.3832 (5)0.3404 (6)0.0336 (8)0.707 (4)
H12C0.49300.39160.28320.040*0.707 (4)
H12D0.47160.43830.36560.040*0.707 (4)
N11B0.5522 (9)0.1873 (8)0.3751 (7)0.0245 (10)0.293 (4)
H11E0.55960.14900.42230.029*0.293 (4)
H11F0.55800.14710.32890.029*0.293 (4)
C11B0.6210 (11)0.2659 (11)0.3730 (12)0.0366 (12)0.293 (4)
H11G0.68000.23760.35550.044*0.293 (4)
H11H0.62830.29450.42970.044*0.293 (4)
C12B0.5934 (8)0.3463 (9)0.3126 (9)0.0398 (13)0.293 (4)
H12E0.63780.40130.31440.048*0.293 (4)
H12F0.59190.31970.25480.048*0.293 (4)
N12B0.5030 (10)0.3828 (13)0.3364 (15)0.0336 (8)0.293 (4)
H12G0.47570.41350.29150.040*0.293 (4)
H12H0.50770.42790.37940.040*0.293 (4)
N21A0.4089 (4)0.2980 (6)0.5029 (5)0.0373 (9)0.707 (4)
H21A0.39060.24460.53470.045*0.707 (4)
H21B0.46350.32020.52350.045*0.707 (4)
C21A0.3404 (4)0.3778 (4)0.5075 (4)0.0418 (13)0.707 (4)
H21C0.31790.38410.56570.050*0.707 (4)
H21D0.36830.44170.49120.050*0.707 (4)
C22A0.2648 (4)0.3553 (4)0.4514 (3)0.0352 (13)0.707 (4)
H22A0.22260.41230.44930.042*0.707 (4)
H22B0.23110.29690.47250.042*0.707 (4)
N22A0.3007 (5)0.3345 (5)0.3666 (3)0.0279 (10)0.707 (4)
H22C0.31050.39310.33850.033*0.707 (4)
H22D0.25910.29790.33670.033*0.707 (4)
N21B0.3959 (10)0.3014 (15)0.5003 (12)0.0373 (9)0.293 (4)
H21E0.41260.25280.53760.045*0.293 (4)
H21F0.42810.35810.51250.045*0.293 (4)
C21B0.2973 (9)0.3207 (9)0.5064 (8)0.0418 (13)0.293 (4)
H21G0.26350.25730.50660.050*0.293 (4)
H21H0.28350.35660.55900.050*0.293 (4)
C22B0.2706 (12)0.3802 (11)0.4348 (8)0.0352 (13)0.293 (4)
H22E0.30500.44310.43430.042*0.293 (4)
H22F0.20520.39610.43820.042*0.293 (4)
N22B0.2895 (13)0.3231 (14)0.3576 (9)0.0279 (10)0.293 (4)
H22G0.29010.36440.31170.033*0.293 (4)
H22H0.24610.27520.34950.033*0.293 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.02763 (13)0.04501 (14)0.04135 (15)−0.00301 (10)0.00464 (11)−0.00509 (12)
I20.05250 (17)0.02837 (11)0.03493 (14)−0.00384 (10)−0.00855 (12)−0.00025 (11)
Ni0.0228 (2)0.01934 (17)0.0261 (2)0.00048 (15)−0.00030 (19)0.00281 (17)
N310.0388 (18)0.0298 (14)0.0311 (16)0.0024 (13)0.0089 (14)−0.0018 (14)
N320.0307 (16)0.0246 (13)0.0327 (16)−0.0070 (12)−0.0054 (13)0.0054 (13)
C310.047 (2)0.045 (2)0.0248 (18)−0.0084 (18)0.0037 (18)−0.0089 (18)
C320.051 (2)0.0238 (16)0.033 (2)−0.0079 (16)0.0012 (18)−0.0016 (16)
N11A0.0270 (18)0.0242 (19)0.022 (3)−0.0039 (15)−0.007 (2)−0.0052 (18)
C11A0.035 (2)0.0383 (17)0.036 (3)0.0028 (14)0.0021 (18)−0.0046 (18)
C12A0.031 (3)0.051 (3)0.037 (3)−0.020 (2)0.010 (3)0.001 (3)
N12A0.0333 (19)0.0277 (15)0.0398 (19)−0.0044 (13)0.0086 (16)0.0071 (15)
N11B0.0270 (18)0.0242 (19)0.022 (3)−0.0039 (15)−0.007 (2)−0.0052 (18)
C11B0.035 (2)0.0383 (17)0.036 (3)0.0028 (14)0.0021 (18)−0.0046 (18)
C12B0.031 (3)0.051 (3)0.037 (3)−0.020 (2)0.010 (3)0.001 (3)
N12B0.0333 (19)0.0277 (15)0.0398 (19)−0.0044 (13)0.0086 (16)0.0071 (15)
N21A0.052 (2)0.0343 (17)0.0254 (17)−0.0082 (18)−0.0119 (18)0.0056 (15)
C21A0.055 (4)0.033 (3)0.037 (3)−0.003 (2)−0.001 (3)−0.002 (3)
C22A0.039 (2)0.036 (3)0.031 (2)0.0025 (19)0.0101 (19)−0.003 (2)
N22A0.027 (2)0.0278 (19)0.0286 (19)0.0027 (16)−0.0043 (16)0.0020 (16)
N21B0.052 (2)0.0343 (17)0.0254 (17)−0.0082 (18)−0.0119 (18)0.0056 (15)
C21B0.055 (4)0.033 (3)0.037 (3)−0.003 (2)−0.001 (3)−0.002 (3)
C22B0.039 (2)0.036 (3)0.031 (2)0.0025 (19)0.0101 (19)−0.003 (2)
N22B0.027 (2)0.0278 (19)0.0286 (19)0.0027 (16)−0.0043 (16)0.0020 (16)

Geometric parameters (Å, °)

Ni—N312.101 (3)N11B—H11E0.9200
Ni—N22A2.105 (7)N11B—H11F0.9200
Ni—N11B2.113 (13)C11B—C12B1.507 (14)
Ni—N12A2.113 (7)C11B—H11G0.9900
Ni—N21A2.116 (7)C11B—H11H0.9900
Ni—N21B2.117 (19)C12B—N12B1.472 (14)
Ni—N322.122 (3)C12B—H12E0.9900
Ni—N11A2.140 (5)C12B—H12F0.9900
Ni—N12B2.180 (18)N12B—H12G0.9200
Ni—N22B2.194 (18)N12B—H12H0.9200
N31—C311.467 (4)N21A—C21A1.478 (8)
N31—H31A0.9200N21A—H21A0.9200
N31—H31B0.9200N21A—H21B0.9200
N32—C321.473 (4)C21A—C22A1.462 (8)
N32—H32A0.9200C21A—H21C0.9900
N32—H32B0.9200C21A—H21D0.9900
C31—C321.508 (5)C22A—N22A1.482 (6)
C31—H31C0.9900C22A—H22A0.9900
C31—H31D0.9900C22A—H22B0.9900
C32—H32C0.9900N22A—H22C0.9200
C32—H32D0.9900N22A—H22D0.9200
N11A—C11A1.473 (7)N21B—C21B1.481 (14)
N11A—H11A0.9200N21B—H21E0.9200
N11A—H11B0.9200N21B—H21F0.9200
C11A—C12A1.495 (8)C21B—C22B1.450 (14)
C11A—H11C0.9900C21B—H21G0.9900
C11A—H11D0.9900C21B—H21H0.9900
C12A—N12A1.470 (8)C22B—N22B1.480 (14)
C12A—H12A0.9900C22B—H22E0.9900
C12A—H12B0.9900C22B—H22F0.9900
N12A—H12C0.9200N22B—H22G0.9200
N12A—H12D0.9200N22B—H22H0.9200
N11B—C11B1.467 (14)
N31—Ni—N22A93.25 (16)C11A—C12A—H12A109.4
N31—Ni—N11B83.9 (3)N12A—C12A—H12B109.4
N22A—Ni—N11B173.3 (4)C11A—C12A—H12B109.4
N31—Ni—N12A91.3 (3)H12A—C12A—H12B108.0
N22A—Ni—N12A90.2 (2)C12A—N12A—Ni108.7 (4)
N11B—Ni—N12A83.8 (3)C12A—N12A—H12C109.9
N31—Ni—N21A171.6 (2)Ni—N12A—H12C109.9
N22A—Ni—N21A81.1 (2)C12A—N12A—H12D109.9
N11B—Ni—N21A102.4 (4)Ni—N12A—H12D109.9
N12A—Ni—N21A94.9 (3)H12C—N12A—H12D108.3
N31—Ni—N21B166.7 (4)C11B—N11B—Ni108.0 (9)
N22A—Ni—N21B75.8 (4)C11B—N11B—H11E110.1
N11B—Ni—N21B107.8 (5)Ni—N11B—H11E110.1
N12A—Ni—N21B96.2 (6)C11B—N11B—H11F110.1
N21A—Ni—N21B5.4 (5)Ni—N11B—H11F110.1
N31—Ni—N3281.99 (11)H11E—N11B—H11F108.4
N22A—Ni—N3295.9 (2)N11B—C11B—C12B110.4 (12)
N11B—Ni—N3289.7 (3)N11B—C11B—H11G109.6
N12A—Ni—N32171.2 (2)C12B—C11B—H11G109.6
N21A—Ni—N3292.4 (2)N11B—C11B—H11H109.6
N21B—Ni—N3291.5 (6)C12B—C11B—H11H109.6
N31—Ni—N11A97.93 (14)H11G—C11B—H11H108.1
N22A—Ni—N11A166.02 (19)N12B—C12B—C11B108.7 (12)
N11B—Ni—N11A14.3 (3)N12B—C12B—H12E110.0
N12A—Ni—N11A81.26 (19)C11B—C12B—H12E110.0
N21A—Ni—N11A88.6 (2)N12B—C12B—H12F110.0
N21B—Ni—N11A94.0 (4)C11B—C12B—H12F110.0
N32—Ni—N11A93.98 (14)H12E—C12B—H12F108.3
N31—Ni—N12B89.7 (6)C12B—N12B—Ni107.5 (10)
N22A—Ni—N12B92.4 (4)C12B—N12B—H12G110.2
N11B—Ni—N12B81.6 (4)Ni—N12B—H12G110.2
N12A—Ni—N12B2.6 (6)C12B—N12B—H12H110.2
N21A—Ni—N12B96.7 (7)Ni—N12B—H12H110.2
N21B—Ni—N12B98.2 (8)H12G—N12B—H12H108.5
N32—Ni—N12B168.6 (5)C21A—N21A—Ni108.3 (4)
N11A—Ni—N12B79.4 (4)C21A—N21A—H21A110.0
N31—Ni—N22B88.1 (4)Ni—N21A—H21A110.0
N22A—Ni—N22B6.7 (5)C21A—N21A—H21B110.0
N11B—Ni—N22B171.8 (5)Ni—N21A—H21B110.0
N12A—Ni—N22B94.6 (5)H21A—N21A—H21B108.4
N21A—Ni—N22B85.7 (4)C22A—C21A—N21A109.8 (5)
N21B—Ni—N22B80.4 (5)C22A—C21A—H21C109.7
N32—Ni—N22B90.9 (5)N21A—C21A—H21C109.7
N11A—Ni—N22B172.7 (4)C22A—C21A—H21D109.7
N12B—Ni—N22B96.7 (6)N21A—C21A—H21D109.7
C31—N31—Ni109.0 (2)H21C—C21A—H21D108.2
C31—N31—H31A109.9C21A—C22A—N22A109.1 (5)
Ni—N31—H31A109.9C21A—C22A—H22A109.9
C31—N31—H31B109.9N22A—C22A—H22A109.9
Ni—N31—H31B109.9C21A—C22A—H22B109.9
H31A—N31—H31B108.3N22A—C22A—H22B109.9
C32—N32—Ni107.9 (2)H22A—C22A—H22B108.3
C32—N32—H32A110.1C22A—N22A—Ni109.7 (4)
Ni—N32—H32A110.1C22A—N22A—H22C109.7
C32—N32—H32B110.1Ni—N22A—H22C109.7
Ni—N32—H32B110.1C22A—N22A—H22D109.7
H32A—N32—H32B108.4Ni—N22A—H22D109.7
N31—C31—C32108.8 (3)H22C—N22A—H22D108.2
N31—C31—H31C109.9C21B—N21B—Ni107.4 (10)
C32—C31—H31C109.9C21B—N21B—H21E110.2
N31—C31—H31D109.9Ni—N21B—H21E110.2
C32—C31—H31D109.9C21B—N21B—H21F110.2
H31C—C31—H31D108.3Ni—N21B—H21F110.2
N32—C32—C31109.0 (3)H21E—N21B—H21F108.5
N32—C32—H32C109.9C22B—C21B—N21B108.2 (12)
C31—C32—H32C109.9C22B—C21B—H21G110.1
N32—C32—H32D109.9N21B—C21B—H21G110.1
C31—C32—H32D109.9C22B—C21B—H21H110.1
H32C—C32—H32D108.3N21B—C21B—H21H110.1
C11A—N11A—Ni107.8 (3)H21G—C21B—H21H108.4
C11A—N11A—H11A110.2C21B—C22B—N22B108.5 (12)
Ni—N11A—H11A110.2C21B—C22B—H22E110.0
C11A—N11A—H11B110.2N22B—C22B—H22E110.0
Ni—N11A—H11B110.2C21B—C22B—H22F110.0
H11A—N11A—H11B108.5N22B—C22B—H22F110.0
N11A—C11A—C12A107.0 (5)H22E—C22B—H22F108.4
N11A—C11A—H11C110.3C22B—N22B—Ni105.9 (10)
C12A—C11A—H11C110.3C22B—N22B—H22G110.5
N11A—C11A—H11D110.3Ni—N22B—H22G110.5
C12A—C11A—H11D110.3C22B—N22B—H22H110.5
H11C—C11A—H11D108.6Ni—N22B—H22H110.5
N12A—C12A—C11A111.1 (5)H22G—N22B—H22H108.7
N12A—C12A—H12A109.4
N22A—Ni—N31—C31−81.5 (3)C11B—C12B—N12B—Ni−38.7 (17)
N11B—Ni—N31—C31104.6 (4)N31—Ni—N12B—C12B−70.9 (13)
N12A—Ni—N31—C31−171.7 (3)N22A—Ni—N12B—C12B−164.2 (13)
N21A—Ni—N31—C31−34.1 (14)N11B—Ni—N12B—C12B12.9 (13)
N21B—Ni—N31—C31−47 (2)N12A—Ni—N12B—C12B162 (18)
N32—Ni—N31—C3114.0 (2)N21A—Ni—N12B—C12B114.5 (13)
N11A—Ni—N31—C31106.9 (3)N21B—Ni—N12B—C12B119.8 (13)
N12B—Ni—N31—C31−173.8 (4)N32—Ni—N12B—C12B−28 (4)
N22B—Ni—N31—C31−77.1 (6)N11A—Ni—N12B—C12B27.2 (12)
N31—Ni—N32—C3214.7 (2)N22B—Ni—N12B—C12B−159.0 (13)
N22A—Ni—N32—C32107.2 (3)N31—Ni—N21A—C21A−63.5 (16)
N11B—Ni—N32—C32−69.1 (4)N22A—Ni—N21A—C21A−15.4 (5)
N12A—Ni—N32—C32−25.7 (15)N11B—Ni—N21A—C21A158.8 (5)
N21A—Ni—N32—C32−171.5 (3)N12A—Ni—N21A—C21A74.0 (5)
N21B—Ni—N32—C32−176.9 (4)N21B—Ni—N21A—C21A−30 (8)
N11A—Ni—N32—C32−82.7 (3)N32—Ni—N21A—C21A−111.0 (5)
N12B—Ni—N32—C32−29 (3)N11A—Ni—N21A—C21A155.1 (5)
N22B—Ni—N32—C32102.7 (4)N12B—Ni—N21A—C21A75.9 (6)
Ni—N31—C31—C32−39.9 (3)N22B—Ni—N21A—C21A−20.3 (7)
Ni—N32—C32—C31−40.5 (3)Ni—N21A—C21A—C22A41.1 (6)
N31—C31—C32—N3254.4 (4)N21A—C21A—C22A—N22A−52.7 (7)
N31—Ni—N11A—C11A69.7 (4)C21A—C22A—N22A—Ni37.8 (6)
N22A—Ni—N11A—C11A−73.1 (10)N31—Ni—N22A—C22A161.9 (4)
N11B—Ni—N11A—C11A79.1 (15)N11B—Ni—N22A—C22A−134 (3)
N12A—Ni—N11A—C11A−20.4 (4)N12A—Ni—N22A—C22A−106.9 (5)
N21A—Ni—N11A—C11A−115.6 (4)N21A—Ni—N22A—C22A−11.9 (5)
N21B—Ni—N11A—C11A−116.1 (7)N21B—Ni—N22A—C22A−10.5 (7)
N32—Ni—N11A—C11A152.1 (4)N32—Ni—N22A—C22A79.6 (4)
N12B—Ni—N11A—C11A−18.5 (7)N11A—Ni—N22A—C22A−55.0 (11)
N22B—Ni—N11A—C11A−76 (4)N12B—Ni—N22A—C22A−108.3 (8)
Ni—N11A—C11A—C12A44.7 (6)N22B—Ni—N22A—C22A121 (5)
N11A—C11A—C12A—N12A−54.8 (7)N31—Ni—N21B—C21B−13 (3)
C11A—C12A—N12A—Ni36.2 (7)N22A—Ni—N21B—C21B22.5 (10)
N31—Ni—N12A—C12A−106.1 (5)N11B—Ni—N21B—C21B−163.3 (10)
N22A—Ni—N12A—C12A160.6 (5)N12A—Ni—N21B—C21B111.1 (11)
N11B—Ni—N12A—C12A−22.4 (6)N21A—Ni—N21B—C21B−172 (9)
N21A—Ni—N12A—C12A79.5 (5)N32—Ni—N21B—C21B−73.1 (12)
N21B—Ni—N12A—C12A84.8 (6)N11A—Ni—N21B—C21B−167.2 (11)
N32—Ni—N12A—C12A−66.1 (18)N12B—Ni—N21B—C21B112.9 (12)
N11A—Ni—N12A—C12A−8.3 (5)N22B—Ni—N21B—C21B17.5 (12)
N12B—Ni—N12A—C12A−53 (17)Ni—N21B—C21B—C22B−47.1 (15)
N22B—Ni—N12A—C12A165.6 (6)N21B—C21B—C22B—N22B61.4 (18)
N31—Ni—N11B—C11B106.4 (10)C21B—C22B—N22B—Ni−42.9 (16)
N22A—Ni—N11B—C11B41 (3)N31—Ni—N22B—C22B−173.6 (11)
N12A—Ni—N11B—C11B14.4 (10)N22A—Ni—N22B—C22B−34 (4)
N21A—Ni—N11B—C11B−79.3 (11)N11B—Ni—N22B—C22B−161 (3)
N21B—Ni—N11B—C11B−80.2 (12)N12A—Ni—N22B—C22B−82.5 (12)
N32—Ni—N11B—C11B−171.7 (10)N21A—Ni—N22B—C22B12.2 (11)
N11A—Ni—N11B—C11B−64.3 (15)N21B—Ni—N22B—C22B13.1 (12)
N12B—Ni—N11B—C11B15.8 (12)N32—Ni—N22B—C22B104.5 (11)
N22B—Ni—N11B—C11B94 (4)N11A—Ni—N22B—C22B−27 (5)
Ni—N11B—C11B—C12B−42.4 (16)N12B—Ni—N22B—C22B−84.1 (13)
N11B—C11B—C12B—N12B55.6 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N31—H31A···I20.922.833.731 (3)167
N31—H31B···I10.922.793.663 (3)158
N32—H32A···I2i0.923.053.786 (3)138
N32—H32B···I1ii0.922.863.724 (3)157
N11A—H11B···I2iii0.922.973.854 (4)162
N12A—H12C···I20.923.153.940 (8)145
N11B—H11F···I2iii0.923.153.619 (12)114
N12B—H12G···I20.923.073.94 (2)159
N12B—H12H···I1iv0.923.273.824 (16)121
N21A—H21A···I2i0.922.923.826 (8)171
N21A—H21B···I1i0.922.773.665 (7)166
N22A—H22D···I1ii0.923.193.905 (7)136
N21B—H21E···I2i0.923.053.86 (2)148
N21B—H21F···I1i0.923.223.832 (16)125
N22B—H22G···I20.923.214.061 (16)154
N22B—H22H···I1ii0.922.803.69 (2)163

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x−1/2, y, −z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2013).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Alvarado, L., Brewer, C. T., Brewer, G., Butcher, R. J., Straka, A. & Viragh, C. (2009). CrystEngComm, 11, 2297–2307.
  • Brewer, G., Butcher, R. J., Viragh, C. & White, G. (2007). Dalton Trans. pp. 4132–4142.
  • Cramer, R. E. & Huneke, J. T. (1978). Inorg. Chem.17, 365–374.
  • Cramer, R. E., van Doorne, W. & Huneke, J. T. (1976). Inorg. Chem.15, 529–535.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Dvorkin, A. A., Kokozei, V. N., Petrusenko, S. R. & Simonov, Y. A. (1991). Ukr. Khim. Zh.57, 5–8.
  • Dvorkin, A. A., Kokozei, V. N., Petrusenko, S. R. & Sinkevich, A. V. (1989). Dokl. Acad. Nauk Ukr. SSR Ser. B Geol. Khim. Biol. Nauk., 10, 31–34.
  • Farago, M. E., James, J. M. & Trew, V. C. G. (1967). J. Chem. Soc. A, 5, 728–729.
  • Korp, J. D., Bernal, I., Palmer, R. A. & Robinson, J. C. (1980). Acta Cryst. B36, 560–564.
  • Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Raston, C. L., White, A. H. & Willis, A. C. (1978). Aust. J. Chem.31, 415–418.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Swink, L. N. & Atoji, M. (1960). Acta Cryst.13, 639–643.
  • Wieczorrek, C. (2000). Acta Cryst. C56, 1079–1081. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography