PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o482.
Published online 2010 January 30. doi:  10.1107/S1600536810002898
PMCID: PMC2979987

2-Nitro-p-phenyl­ene dibenzene­sulfonate

Abstract

In the title compound, C18H13NO8S2, the nitro­phenyl ring forms dihedral angles of 46.67 (7) and 75.40 (6)° with the phenyl rings. The nitro group makes a dihedral angle of 26.13 (8)° with the attached ring. The crystal packing is stabilized by weak inter­molecular C—H(...)O hydrogen bonds.

Related literature

For background to the use of phenolic esters in organic synthesis, see: Trollsås et al. (1996 [triangle]); Svensson et al. (1998 [triangle]); Atkinson et al. (2005 [triangle]); Hu et al. (2001 [triangle]). For a related structure, see: Ji et al. (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o482-scheme1.jpg

Experimental

Crystal data

  • C18H13NO8S2
  • M r = 435.43
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o482-efi1.jpg
  • a = 11.669 (5) Å
  • b = 10.554 (4) Å
  • c = 15.343 (7) Å
  • β = 101.462 (7)°
  • V = 1851.9 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 113 K
  • 0.30 × 0.07 × 0.06 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007 [triangle]) T min = 0.906, T max = 0.980
  • 15174 measured reflections
  • 4386 independent reflections
  • 3278 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.121
  • S = 1.08
  • 4386 reflections
  • 262 parameters
  • H-atom parameters constrained
  • Δρmax = 1.11 e Å−3
  • Δρmin = −0.50 e Å−3

Data collection: CrystalClear (Rigaku, 2007 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810002898/bq2192sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002898/bq2192Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Phenolic esters can be used to synthesize some useful intermediates in organic synthesis (Trollsås et al., 1996; Svensson et al., 1998; Atkinson et al., 2005; Hu et al., 2001).

The compound (I) was prepared by the reaction of 2-nitrohydroquinone and 4-phenylsulfonyl chloride in the presence of triethylamine (Ji et al., 2006) and its structure was reported here.

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). The three aromatic rings ((C1 to C6), (C7 to C12) and (C13 to C18) form two dihedral angles of 46.67 (7)° and 75.40 (6)° in turn. The nitro group plane is connected with the aromatic plane with a dihedral angle of 26.13 (8)°. The torsion angles of C1—S1—O3—C7 and C10—O6—S2—C13 are 84.81 (15)° and -79.15 (16)°, respectively. In the crystal structure, intermolecular C—H···O hydrogen bonds link the molecules (Table 1, Figure 2).

Experimental

2-nitrohydroquinone (78 mg, 0.5 mmol) was dissolved in chloroform (30 ml). To this solution, 4-phenylsulfonyl chloride (209 mg, 1.0 mmol) and triethylamine (101 mg, 1.0 mmol) were added and the reaction was stirred at room temperature for 3 h. The reaction mixture was extracted with dichloromethane and dried with anhydrous sodium sulphate. After concentration, the residue was separated by flash column chromatography and purified by recrystallization from chloroform (yield 156 mg, 72%, m.p. 393 K). Spectroscopic analysis: IR (KBr, ν, cm-1): 3075, 1541, 1483, 1379, 1198, 1165, 1091, 855, 733.

Refinement

All H atoms were positioned geometrically and refined as riding (C—H = 0.95Å for aromatic H) and allowed to ride on their parent atoms, with Uiso(H) =1.2Ueq(parent).

Figures

Fig. 1.
The molecular structure of the title compound, (I), with displacement ellipsoids drawn at 30% probability level.
Fig. 2.
The crystal structure of (I), view along the a-axis. Dashed lines indicate C—H···O interactions.

Crystal data

C18H13NO8S2F(000) = 896
Mr = 435.43Dx = 1.562 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6872 reflections
a = 11.669 (5) Åθ = 1.4–27.9°
b = 10.554 (4) ŵ = 0.34 mm1
c = 15.343 (7) ÅT = 113 K
β = 101.462 (7)°Prism, colorless
V = 1851.9 (14) Å30.30 × 0.07 × 0.06 mm
Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer4386 independent reflections
Radiation source: Rotating anode3278 reflections with I > 2σ(I)
multilayerRint = 0.035
Detector resolution: 14.63 pixels mm-1θmax = 27.8°, θmin = 1.8°
ω and [var phi] scansh = −15→15
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007)k = −12→13
Tmin = 0.906, Tmax = 0.980l = −20→14
15174 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0646P)2] where P = (Fo2 + 2Fc2)/3
4386 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = −0.49 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.47624 (5)0.78506 (4)0.24585 (3)0.02226 (14)
S21.02988 (5)0.38180 (5)0.34494 (3)0.02633 (15)
O10.46295 (13)0.67436 (12)0.19112 (9)0.0252 (3)
O20.43170 (13)0.90467 (13)0.21175 (10)0.0290 (4)
O30.61466 (13)0.81300 (12)0.27823 (10)0.0248 (3)
O40.67578 (15)0.81516 (13)0.11784 (10)0.0337 (4)
O50.69050 (14)0.62624 (13)0.06595 (9)0.0302 (4)
O60.88958 (13)0.37990 (13)0.32927 (10)0.0271 (3)
O71.06055 (15)0.25648 (14)0.37645 (10)0.0369 (4)
O81.07180 (14)0.49022 (15)0.39729 (10)0.0346 (4)
N10.69459 (15)0.70129 (15)0.12753 (11)0.0233 (4)
C10.42957 (18)0.75292 (18)0.34514 (13)0.0224 (4)
C20.4055 (2)0.62808 (19)0.36603 (14)0.0281 (5)
H20.41560.55990.32780.034*
C30.3661 (2)0.6070 (2)0.44472 (15)0.0341 (6)
H30.34980.52300.46100.041*
C40.3503 (2)0.7068 (2)0.49945 (15)0.0334 (5)
H40.32080.69130.55190.040*
C50.3772 (2)0.8296 (2)0.47808 (15)0.0336 (6)
H50.36860.89730.51710.040*
C60.4165 (2)0.85408 (19)0.40072 (14)0.0274 (5)
H60.43430.93810.38560.033*
C70.68888 (17)0.70745 (17)0.28997 (13)0.0212 (4)
C80.72464 (18)0.66007 (18)0.37471 (14)0.0236 (4)
H80.70010.69990.42350.028*
C90.79652 (18)0.55410 (19)0.38883 (14)0.0242 (4)
H90.82290.52180.44720.029*
C100.82902 (17)0.49626 (18)0.31632 (13)0.0218 (4)
C110.79618 (17)0.54331 (17)0.23077 (13)0.0212 (4)
H110.82030.50320.18200.025*
C120.72676 (17)0.65101 (17)0.21879 (13)0.0199 (4)
C131.05739 (19)0.40052 (19)0.23713 (13)0.0255 (5)
C141.1317 (2)0.4954 (2)0.22087 (16)0.0348 (5)
H141.16570.55240.26670.042*
C151.1561 (2)0.5059 (2)0.13575 (18)0.0460 (7)
H151.20780.57000.12330.055*
C161.1054 (3)0.4237 (3)0.06989 (16)0.0470 (7)
H161.12220.43140.01200.056*
C171.0300 (3)0.3298 (3)0.08698 (16)0.0451 (7)
H170.99490.27400.04070.054*
C181.0057 (2)0.3169 (2)0.17063 (16)0.0352 (6)
H180.95470.25210.18280.042*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0194 (3)0.0219 (3)0.0260 (3)0.00342 (19)0.0056 (2)0.0013 (2)
S20.0199 (3)0.0352 (3)0.0239 (3)0.0062 (2)0.0046 (2)0.0068 (2)
O10.0246 (8)0.0264 (7)0.0247 (7)0.0009 (6)0.0049 (6)−0.0019 (6)
O20.0293 (9)0.0253 (7)0.0337 (8)0.0094 (6)0.0097 (7)0.0064 (6)
O30.0191 (8)0.0197 (7)0.0358 (8)0.0021 (5)0.0063 (6)−0.0014 (6)
O40.0399 (10)0.0241 (8)0.0382 (9)0.0079 (7)0.0102 (8)0.0108 (7)
O50.0348 (9)0.0310 (8)0.0246 (8)−0.0030 (7)0.0055 (7)0.0013 (7)
O60.0192 (8)0.0278 (7)0.0350 (8)0.0049 (6)0.0069 (7)0.0087 (6)
O70.0337 (10)0.0424 (9)0.0373 (9)0.0174 (7)0.0132 (8)0.0187 (8)
O80.0247 (9)0.0511 (9)0.0268 (8)0.0040 (7)0.0023 (7)−0.0051 (7)
N10.0200 (9)0.0249 (9)0.0261 (9)0.0002 (7)0.0071 (7)0.0038 (7)
C10.0191 (10)0.0236 (10)0.0241 (10)0.0014 (8)0.0032 (8)−0.0007 (8)
C20.0318 (13)0.0228 (10)0.0309 (11)−0.0029 (9)0.0093 (10)−0.0063 (9)
C30.0443 (15)0.0274 (11)0.0326 (12)−0.0097 (10)0.0125 (11)−0.0016 (9)
C40.0452 (15)0.0326 (12)0.0237 (11)−0.0062 (10)0.0100 (10)−0.0024 (9)
C50.0461 (16)0.0278 (11)0.0274 (11)0.0003 (10)0.0090 (11)−0.0064 (9)
C60.0328 (13)0.0203 (10)0.0287 (11)0.0022 (8)0.0053 (10)−0.0005 (8)
C70.0156 (10)0.0193 (9)0.0284 (10)−0.0013 (7)0.0038 (8)−0.0018 (8)
C80.0180 (10)0.0277 (10)0.0262 (10)−0.0040 (8)0.0069 (8)−0.0051 (9)
C90.0193 (10)0.0292 (10)0.0230 (10)−0.0031 (8)0.0017 (8)0.0026 (9)
C100.0155 (10)0.0227 (9)0.0272 (10)0.0012 (8)0.0046 (8)0.0042 (8)
C110.0179 (10)0.0234 (10)0.0237 (10)−0.0007 (8)0.0074 (8)0.0001 (8)
C120.0165 (10)0.0201 (9)0.0230 (10)−0.0014 (7)0.0040 (8)0.0030 (8)
C130.0232 (11)0.0318 (11)0.0223 (10)0.0102 (9)0.0061 (8)0.0052 (9)
C140.0304 (13)0.0365 (12)0.0386 (13)0.0070 (10)0.0097 (10)0.0058 (10)
C150.0442 (16)0.0480 (15)0.0527 (16)0.0152 (12)0.0265 (13)0.0218 (13)
C160.0529 (18)0.0647 (17)0.0274 (12)0.0351 (15)0.0179 (12)0.0162 (13)
C170.0471 (17)0.0592 (16)0.0262 (12)0.0264 (14)0.0002 (12)−0.0033 (12)
C180.0320 (13)0.0384 (12)0.0350 (12)0.0117 (10)0.0061 (10)−0.0024 (10)

Geometric parameters (Å, °)

S1—O21.4246 (14)C5—H50.9500
S1—O11.4291 (15)C6—H60.9500
S1—O31.6198 (16)C7—C81.378 (3)
S1—C11.750 (2)C7—C121.391 (3)
S2—O81.4274 (16)C8—C91.389 (3)
S2—O71.4291 (15)C8—H80.9500
S2—O61.6069 (17)C9—C101.386 (3)
S2—C131.758 (2)C9—H90.9500
O3—C71.401 (2)C10—C111.384 (3)
O4—N11.225 (2)C11—C121.387 (3)
O5—N11.226 (2)C11—H110.9500
O6—C101.411 (2)C13—C141.380 (3)
N1—C121.474 (2)C13—C181.393 (3)
C1—C61.394 (3)C14—C151.395 (3)
C1—C21.398 (3)C14—H140.9500
C2—C31.393 (3)C15—C161.373 (4)
C2—H20.9500C15—H150.9500
C3—C41.383 (3)C16—C171.385 (4)
C3—H30.9500C16—H160.9500
C4—C51.388 (3)C17—C181.375 (4)
C4—H40.9500C17—H170.9500
C5—C61.379 (3)C18—H180.9500
O2—S1—O1121.30 (9)C8—C7—O3118.26 (18)
O2—S1—O3102.71 (8)C12—C7—O3121.64 (17)
O1—S1—O3108.31 (8)C7—C8—C9120.0 (2)
O2—S1—C1109.73 (9)C7—C8—H8120.0
O1—S1—C1109.68 (9)C9—C8—H8120.0
O3—S1—C1103.42 (9)C10—C9—C8118.85 (19)
O8—S2—O7121.12 (10)C10—C9—H9120.6
O8—S2—O6108.61 (9)C8—C9—H9120.6
O7—S2—O6102.61 (9)C11—C10—C9122.31 (19)
O8—S2—C13109.46 (10)C11—C10—O6118.83 (18)
O7—S2—C13110.01 (10)C9—C10—O6118.65 (17)
O6—S2—C13103.41 (9)C10—C11—C12117.65 (19)
C7—O3—S1116.62 (12)C10—C11—H11121.2
C10—O6—S2118.49 (12)C12—C11—H11121.2
O4—N1—O5124.14 (17)C11—C12—C7121.03 (18)
O4—N1—C12118.28 (17)C11—C12—N1116.91 (18)
O5—N1—C12117.56 (16)C7—C12—N1122.06 (17)
C6—C1—C2122.0 (2)C14—C13—C18121.6 (2)
C6—C1—S1118.36 (16)C14—C13—S2119.40 (17)
C2—C1—S1119.60 (16)C18—C13—S2118.99 (18)
C3—C2—C1117.77 (19)C13—C14—C15118.7 (2)
C3—C2—H2121.1C13—C14—H14120.7
C1—C2—H2121.1C15—C14—H14120.7
C4—C3—C2120.8 (2)C16—C15—C14120.0 (3)
C4—C3—H3119.6C16—C15—H15120.0
C2—C3—H3119.6C14—C15—H15120.0
C3—C4—C5120.3 (2)C15—C16—C17120.7 (2)
C3—C4—H4119.9C15—C16—H16119.7
C5—C4—H4119.9C17—C16—H16119.7
C6—C5—C4120.5 (2)C18—C17—C16120.3 (2)
C6—C5—H5119.7C18—C17—H17119.9
C4—C5—H5119.7C16—C17—H17119.9
C5—C6—C1118.6 (2)C17—C18—C13118.8 (2)
C5—C6—H6120.7C17—C18—H18120.6
C1—C6—H6120.7C13—C18—H18120.6
C8—C7—C12120.10 (18)
O2—S1—O3—C7−161.01 (14)S2—O6—C10—C9−95.9 (2)
O1—S1—O3—C7−31.54 (16)C9—C10—C11—C12−1.1 (3)
C1—S1—O3—C784.81 (15)O6—C10—C11—C12173.68 (17)
O8—S2—O6—C1037.06 (17)C10—C11—C12—C7−1.8 (3)
O7—S2—O6—C10166.41 (14)C10—C11—C12—N1178.80 (17)
C13—S2—O6—C10−79.15 (16)C8—C7—C12—C113.0 (3)
O2—S1—C1—C6−33.48 (19)O3—C7—C12—C11−177.22 (17)
O1—S1—C1—C6−169.09 (16)C8—C7—C12—N1−177.57 (18)
O3—S1—C1—C675.54 (18)O3—C7—C12—N12.2 (3)
O2—S1—C1—C2145.86 (17)O4—N1—C12—C11−151.69 (18)
O1—S1—C1—C210.3 (2)O5—N1—C12—C1127.0 (3)
O3—S1—C1—C2−105.11 (17)O4—N1—C12—C728.9 (3)
C6—C1—C2—C30.7 (3)O5—N1—C12—C7−152.42 (19)
S1—C1—C2—C3−178.60 (17)O8—S2—C13—C1412.8 (2)
C1—C2—C3—C40.7 (3)O7—S2—C13—C14−122.56 (18)
C2—C3—C4—C5−2.1 (4)O6—S2—C13—C14128.44 (17)
C3—C4—C5—C62.1 (4)O8—S2—C13—C18−168.81 (16)
C4—C5—C6—C1−0.6 (3)O7—S2—C13—C1855.8 (2)
C2—C1—C6—C5−0.8 (3)O6—S2—C13—C18−53.20 (18)
S1—C1—C6—C5178.57 (17)C18—C13—C14—C15−0.7 (3)
S1—O3—C7—C8−97.86 (18)S2—C13—C14—C15177.62 (17)
S1—O3—C7—C1282.4 (2)C13—C14—C15—C160.7 (3)
C12—C7—C8—C9−1.4 (3)C14—C15—C16—C17−0.1 (4)
O3—C7—C8—C9178.82 (17)C15—C16—C17—C18−0.6 (4)
C7—C8—C9—C10−1.3 (3)C16—C17—C18—C130.6 (3)
C8—C9—C10—C112.6 (3)C14—C13—C18—C170.0 (3)
C8—C9—C10—O6−172.13 (17)S2—C13—C18—C17−178.28 (17)
S2—O6—C10—C1189.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.952.493.234 (3)135
C9—H9···O8ii0.952.463.368 (3)160

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2192).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Atkinson, P. J., Bromidge, S. M., Duxon, M. S., Gaster, L. M., Hadley, M. S., Hammond, B., Johnson, C. N., Middlemiss, D. N., North, S. E., Price, G. W., Rami, H. K., Riley, G. J., Scott, C. M., Shaw, T. E., Starr, K. R., Stemp, G., Thewlis, K. M., Thomas, D. R., Thompson, M., Vong, A. K. K. & Watson, J. M. (2005). Bioorg. Med. Chem. Lett.15, 737–741. [PubMed]
  • Hu, B., Ellingboe, J., Gunawan, I., Han, S., Largis, E., Li, Z., Malamas, M., Mulvey, R., Oliphant, A., Sum, F.-W., Tillett, J. & Wong, V. (2001). Bioorg. Med. Chem. Lett.11, 757–760. [PubMed]
  • Ji, X. & Li, C. (2006). Synthesis, pp. 2478–2482.
  • Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Svensson, M., Helgee, B., Skarp, K. & Andersson, G. (1998). J. Mater. Chem. 8, 353–362.
  • Trollsås, M., Orrenius, C., Sahlén, F., Gedde, U. W., Norin, T., Hult, A., Hermann, D., Rudquist, P., Komitov, L., Lagerwall, S. T. & Lindström, J. (1996). J. Am. Chem. Soc.118, 8542–8548.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography