PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): i3.
Published online 2010 January 9. doi:  10.1107/S1600536809055822
PMCID: PMC2979984

Lithium samarium polyphosphate, LiSm(PO3)4

Abstract

The mixed-metal rare-earth polyphosphate LiSm(PO3)4 consists of a three-dimensional framework in which zigzag [(PO3)n]n chains with a periodicity of four PO4 tetrahedra are connected through Li+ and Sm3+ ions (both with 2. symmetry).

Related literature

For the structures, properties and applications of condensed alkaline metal–rare earth polyphosphates with the general formula MLn(PO3)4 (M = alkali metal, Ln = rare earth metal), see: Ferid et al. (1984 [triangle]); Ettis et al. (2003 [triangle]); Parreu et al. (2007 [triangle]); Zhu et al. (2007 [triangle]); Ben Zarkouna et al. (2007 [triangle]).

Experimental

Crystal data

  • LiSm(PO3)4
  • M r = 473.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-000i3-efi1.jpg
  • a = 16.379 (2) Å
  • b = 7.0499 (9) Å
  • c = 9.6936 (12) Å
  • β = 126.138 (2)°
  • V = 903.96 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 7.27 mm−1
  • T = 298 K
  • 0.20 × 0.15 × 0.05 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.439, T max = 1.000
  • 2405 measured reflections
  • 854 independent reflections
  • 843 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019
  • wR(F 2) = 0.048
  • S = 1.09
  • 854 reflections
  • 84 parameters
  • Δρmax = 1.02 e Å−3
  • Δρmin = −0.71 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809055822/mg2086sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055822/mg2086Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Interest in alkali-metal rare-earth polyphosphates stems from their physical properties, such as high luminescence efficiency (Ettis et al., 2003; Parreu et al., 2007; Zhu et al., 2007). The compound LiSm(PO3)4 has been reported but only unit cell parameters have been refined from powder X-ray diffraction data (Ferid et al., 1984). The single-crystal structure determination performed here confirms that it is isotypic with LiLn(PO3)4 (Ln = Y, La, Nd, Eu, Gd, Tb, Dy, Er, Yb) (Ben Zarkouna et al., 2007). The structure features two P sites (Fig. 1) centred within PO4 tetrahedra, which share common corners (O2 or O6) to form infinite zigzag chains (PO3)nn- that are aligned parallel to the b-direction and are linked together by four-coordinate Li+ and eight-coordinate Sm3+ ions (Fig. 2).

Experimental

Finely ground reagents Li2CO3, Sm2O3, and NH4H2PO4 were mixed in a molar ratio of Li:Sm:P = 7:1:10, placed in a Pt crucible, and heated at 673 K for 4 h. The mixture was reground and heated at 1073 K for 20 h, cooled to 873 K at a rate of 4 K h-1, and then quenched to room temperature. A few yellow prism-shaped crystals of the title compound were obtained.

Refinement

The highest peak and the deepest hole in the difference electron density map are located 0.92 Å and 1.11 Å, respectively, from Sm1.

Figures

Fig. 1.
Part of the structure of LiSm(PO3)4 showing the labelling of all atoms. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Projection of the structure of LiSm(PO3)4 down the b axis.

Crystal data

LiSm(PO3)4F(000) = 884
Mr = 473.17Dx = 3.477 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 487 reflections
a = 16.379 (2) Åθ = 2.1–23.0°
b = 7.0499 (9) ŵ = 7.27 mm1
c = 9.6936 (12) ÅT = 298 K
β = 126.138 (2)°Prism, yellow
V = 903.96 (19) Å30.20 × 0.15 × 0.05 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer854 independent reflections
Radiation source: fine-focus sealed tube843 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 25.7°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 1997)h = −20→19
Tmin = 0.439, Tmax = 1.000k = −8→8
2405 measured reflectionsl = −10→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019w = 1/[σ2(Fo2) + (0.0274P)2 + 6.0112P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max = 0.001
S = 1.09Δρmax = 1.02 e Å3
854 reflectionsΔρmin = −0.71 e Å3
84 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0069 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Li10.50000.2975 (12)0.75000.014 (2)
Sm10.50000.20102 (3)0.25000.00541 (15)
P10.36163 (7)0.55515 (13)0.33744 (11)0.0057 (2)
P20.35188 (7)0.15529 (14)0.40335 (12)0.0056 (2)
O10.3857 (2)0.7182 (4)0.4524 (4)0.0117 (6)
O20.3410 (2)0.3787 (4)0.4149 (3)0.0094 (5)
O30.4267 (2)0.0930 (4)0.5830 (3)0.0104 (5)
O40.3705 (2)0.1147 (4)0.2737 (3)0.0104 (5)
O50.43430 (19)0.5038 (4)0.2978 (3)0.0094 (5)
O60.25564 (19)0.5836 (4)0.1557 (3)0.0091 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Li10.018 (5)0.011 (5)0.016 (5)0.0000.011 (5)0.000
Sm10.00650 (19)0.00499 (19)0.00591 (19)0.0000.00431 (14)0.000
P10.0060 (4)0.0046 (4)0.0068 (5)0.0004 (3)0.0040 (4)0.0004 (3)
P20.0059 (4)0.0053 (4)0.0062 (5)−0.0005 (3)0.0040 (4)0.0004 (4)
O10.0130 (14)0.0093 (14)0.0112 (15)−0.0007 (10)0.0063 (13)−0.0026 (10)
O20.0167 (13)0.0052 (13)0.0133 (13)0.0000 (10)0.0126 (12)0.0009 (10)
O30.0108 (13)0.0076 (12)0.0094 (13)0.0003 (10)0.0041 (11)0.0016 (10)
O40.0127 (13)0.0110 (13)0.0126 (13)−0.0019 (11)0.0102 (11)−0.0026 (11)
O50.0076 (12)0.0107 (13)0.0111 (13)0.0012 (10)0.0061 (11)0.0021 (10)
O60.0083 (12)0.0125 (13)0.0073 (12)0.0027 (10)0.0049 (11)0.0012 (10)

Geometric parameters (Å, °)

Li1—O31.962 (7)Sm1—O5iv2.553 (3)
Li1—O3i1.962 (7)P1—O11.483 (3)
Li1—O5ii1.980 (7)P1—O51.495 (3)
Li1—O5iii1.980 (7)P1—O21.590 (3)
Li1—P22.927 (3)P1—O61.597 (3)
Li1—P2i2.927 (3)P1—Li1iii3.033 (3)
Li1—P1ii3.033 (3)P2—O41.485 (3)
Li1—P1iii3.033 (3)P2—O31.487 (3)
Sm1—O42.345 (3)P2—O6viii1.580 (3)
Sm1—O4iv2.345 (3)P2—O21.596 (3)
Sm1—O1iii2.405 (3)O1—Sm1iii2.405 (3)
Sm1—O1v2.405 (3)O3—Sm1vii2.463 (3)
Sm1—O3vi2.463 (3)O5—Li1iii1.980 (7)
Sm1—O3vii2.463 (3)O6—P2ix1.580 (3)
Sm1—O52.553 (3)
O3—Li1—O3i85.4 (4)O3vi—Sm1—O3vii65.38 (12)
O3—Li1—O5ii124.08 (11)O4—Sm1—O572.34 (9)
O3i—Li1—O5ii118.63 (11)O4iv—Sm1—O5137.49 (9)
O3—Li1—O5iii118.63 (11)O1iii—Sm1—O572.38 (9)
O3i—Li1—O5iii124.08 (11)O1v—Sm1—O584.63 (9)
O5ii—Li1—O5iii90.0 (4)O3vi—Sm1—O5136.79 (8)
O3—Li1—P227.29 (8)O3vii—Sm1—O5132.74 (9)
O3i—Li1—P2112.7 (3)O4—Sm1—O5iv137.49 (9)
O5ii—Li1—P2108.29 (11)O4iv—Sm1—O5iv72.34 (9)
O5iii—Li1—P299.83 (10)O1iii—Sm1—O5iv84.63 (9)
O3—Li1—P2i112.7 (3)O1v—Sm1—O5iv72.38 (9)
O3i—Li1—P2i27.29 (8)O3vi—Sm1—O5iv132.74 (9)
O5ii—Li1—P2i99.83 (10)O3vii—Sm1—O5iv136.79 (8)
O5iii—Li1—P2i108.29 (11)O5—Sm1—O5iv66.51 (12)
P2—Li1—P2i139.9 (3)O4—Sm1—Li1vii74.97 (7)
O3—Li1—P1ii106.74 (11)O4iv—Sm1—Li1vii74.97 (7)
O3i—Li1—P1ii102.43 (10)O1iii—Sm1—Li1vii103.71 (6)
O5ii—Li1—P1ii25.02 (8)O1v—Sm1—Li1vii103.71 (6)
O5iii—Li1—P1ii114.9 (3)O3vi—Sm1—Li1vii32.69 (6)
P2—Li1—P1ii100.84 (3)O3vii—Sm1—Li1vii32.69 (6)
P2i—Li1—P1ii92.67 (3)O5—Sm1—Li1vii146.74 (6)
O3—Li1—P1iii102.43 (10)O5iv—Sm1—Li1vii146.74 (6)
O3i—Li1—P1iii106.74 (11)O4—Sm1—Li1iii105.03 (7)
O5ii—Li1—P1iii114.9 (3)O4iv—Sm1—Li1iii105.03 (7)
O5iii—Li1—P1iii25.02 (8)O1iii—Sm1—Li1iii76.29 (6)
P2—Li1—P1iii92.67 (3)O1v—Sm1—Li1iii76.29 (6)
P2i—Li1—P1iii100.84 (3)O3vi—Sm1—Li1iii147.31 (6)
P1ii—Li1—P1iii139.9 (3)O3vii—Sm1—Li1iii147.31 (6)
O3—Li1—Sm1vii42.70 (19)O5—Sm1—Li1iii33.26 (6)
O3i—Li1—Sm1vii42.70 (19)O5iv—Sm1—Li1iii33.26 (6)
O5ii—Li1—Sm1vii135.01 (19)Li1vii—Sm1—Li1iii180.000 (1)
O5iii—Li1—Sm1vii135.01 (19)O1—P1—O5118.76 (17)
P2—Li1—Sm1vii69.97 (16)O1—P1—O2106.74 (15)
P2i—Li1—Sm1vii69.97 (16)O5—P1—O2110.85 (15)
P1ii—Li1—Sm1vii110.03 (16)O1—P1—O6111.48 (16)
P1iii—Li1—Sm1vii110.03 (16)O5—P1—O6105.01 (14)
O3—Li1—Sm1iii137.30 (19)O2—P1—O6102.92 (15)
O3i—Li1—Sm1iii137.30 (19)O1—P1—Li1iii91.88 (18)
O5ii—Li1—Sm1iii44.99 (19)O2—P1—Li1iii143.38 (18)
O5iii—Li1—Sm1iii44.99 (19)O6—P1—Li1iii98.86 (11)
P2—Li1—Sm1iii110.03 (16)O4—P2—O3119.71 (16)
P2i—Li1—Sm1iii110.03 (16)O4—P2—O6viii111.89 (15)
P1ii—Li1—Sm1iii69.97 (16)O3—P2—O6viii107.63 (15)
P1iii—Li1—Sm1iii69.97 (16)O4—P2—O2109.68 (15)
Sm1vii—Li1—Sm1iii180.0O3—P2—O2104.96 (15)
O4—Sm1—O4iv149.93 (13)O6viii—P2—O2101.19 (15)
O4—Sm1—O1iii93.04 (10)O4—P2—Li1126.36 (11)
O4iv—Sm1—O1iii94.01 (10)O6viii—P2—Li1121.18 (11)
O4—Sm1—O1v94.01 (10)O2—P2—Li168.45 (19)
O4iv—Sm1—O1v93.04 (10)P1—O1—Sm1iii139.38 (17)
O1iii—Sm1—O1v152.59 (13)P1—O2—P2132.45 (17)
O4—Sm1—O3vi74.20 (9)P2—O3—Li1115.5 (2)
O4iv—Sm1—O3vi80.54 (9)P2—O3—Sm1vii139.82 (16)
O1iii—Sm1—O3vi136.12 (9)Li1—O3—Sm1vii104.6 (2)
O1v—Sm1—O3vi71.22 (9)P2—O4—Sm1132.98 (16)
O4—Sm1—O3vii80.54 (9)P1—O5—Li1iii120.9 (2)
O4iv—Sm1—O3vii74.20 (9)P1—O5—Sm1137.19 (16)
O1iii—Sm1—O3vii71.22 (9)Li1iii—O5—Sm1101.8 (2)
O1v—Sm1—O3vii136.12 (9)P2ix—O6—P1133.96 (18)

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) x, −y+1, z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+1, y, −z+1/2; (v) x, −y+1, z−1/2; (vi) x, −y, z−1/2; (vii) −x+1, −y, −z+1; (viii) −x+1/2, y−1/2, −z+1/2; (ix) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2086).

References

  • Ben Zarkouna, E., Horchani-Naifer, K., Férid, M. & Driss, A. (2007). Acta Cryst. E63, i1–i2.
  • Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ettis, H., Naïli, H. & Mhiri, T. (2003). Cryst. Growth Des.3, 599–602.
  • Ferid, M., Dogguy, M., Kbir-Ariguib, N. & Trabelsi, M. (1984). J. Solid State Chem.53, 149–154.
  • Parreu, I., Solé, R., Massons, J., Díaz, F. & Aguiló, M. (2007). Cryst. Growth Des.7, 557–563.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zhu, J., Cheng, W.-D., Wu, D.-S., Zhang, H., Gong, Y.-J., Tong, H.-N. & Zhao, D. (2007). Eur. J. Inorg. Chem. pp. 285–290.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography