PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o334.
Published online 2010 January 13. doi:  10.1107/S1600536810000619
PMCID: PMC2979982

1α,6β,7β,11α,15β-Penta­hydr­oxy-7α,20-ep­oxy-ent-kaur-16-ene

Abstract

The title compound, C20H30O6, a natural ent-kaurane diterpenoid, named nervosanin B, was obtained from the medicinal plant Isodon serra. It is composed of four rings with the expected trans and cis junctions. One of the six-membered rings is in a chair conformation, the other two are in boat conformations and the five-membered ring adopts an evenlope conformation. The mol­ecules stack along the a axis and are linked together by inter­molecular O—H(...)O hydrogen bonds. Two intramolecular O—H(...)O interactions also occur.

Related literature

For related literature on genus Isodon and diterpenoids, see: Sun et al. (2001 [triangle]); Wang et al. (1994 [triangle]); Yan et al. (2008 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o334-scheme1.jpg

Experimental

Crystal data

  • C20H30O6
  • M r = 366.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o334-efi1.jpg
  • a = 21.581 (11) Å
  • b = 6.111 (3) Å
  • c = 14.080 (7) Å
  • β = 99.129 (8)°
  • V = 1833.3 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 93 K
  • 0.60 × 0.18 × 0.14 mm

Data collection

  • Rigaku AFC10/Saturn724+ diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.944, T max = 0.987
  • 7255 measured reflections
  • 2291 independent reflections
  • 1853 reflections with I > 2σ(I)
  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.079
  • S = 1.00
  • 2291 reflections
  • 257 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CrystalClear (Rigaku, 2008 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Siemens, 1995 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810000619/hg2628sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000619/hg2628Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Henan Province Science and Technology Foundation of China (grant No. 611042600).

supplementary crystallographic information

Comment

The title compound, 1α,6β,7β,11α,15β-Pentahydroxy-7α,20-epoxy- ent-kaur-16-ene is a natural ent-kaurane diterpenoid. It has been reported previously from Isodon nervosa (Wang et al., 1994; Yan et al., 2008) and its structure was postulated from spectroscopic methods (Wang et al., 1994). Recently, it was also isolated from the medicinal plant Isodon serra, and its crystal structure analysis has been undertaken. The molecular structure is presented in Fig. 1. The molecule contains three six-membered rings (A,B and C) and a five-membered ring (D). There is a trans junction between ring A (C1—C5/C10) and ring B (C5—C10); cis junctions are present between ring B and ring C (C8/C9/C11—C14), and ring C and ring D (C8/C13—C16). Ring A adopts chair conformation, with an average torsion angles of 50.6 (3) °. Rings B and C adopt boat conformations because of the formation of the oxygen bridge at C-7 and C-20. Ring D shows an envelope conformation. In addition, the six-membered rings O1/C20/C10/C5—C7 and O1/C7—C10/C20 both adopt boat conformations.

The bond lengths are within expected ranges (Allen et al., 1987), with averages values (Å): Csp3—Csp3 = 1.542 (3), Csp3—Csp2 = 1.521 (4), Csp2—Csp2 (CC) = 1.312 (4), Csp3—O = 1.435 (3). Compound contains ten chiral centers at C1(S), C5(R), C6(S), C7(S), C8(S), C9(S), C10(S), C11(R) C13(S) and C15(R). Although the absolute configuration could not be reliably determined from anomalous dispersion effects, the negative optical rotation showed this compound to be in the ent-kaurane series as reported in genus Isodon (Sun et al., 2001), rather than in the kaurane series, and so allowed us to assign the correct configuration. In the crystal structure, the molecular packing is stabilized by O2—H···O5, O4—H···O6, O3—H···O6, O5—H···O2 and O6—H···O3 hydrogen bonds along the a axis and are linked by O—H···O hydrogen bonds (Table 1 and Fig. 2).

Experimental

The dried and crushed leaves of Isodon serra (Maxim.) (10 kg, collected from Tongbai Prefecture, Henan Province, China) were extracted four times with Me2CO/H2O (7:3, v/v) at room temperature over a period of six days. The extract was filtered and the solvent was removed under reduced pressure. The residue was then partitioned between water and AcOEt. After removal of the solvent, the AcOEt residue was separated by repeated silica gel (200–300 mesh) column chromatography and recrystallization from CHCl3/CH3OH (10:1), giving 45 mg of compound (m.p. 531–533 K. Optical rotation: [α]D20 -50.6 ° (c 0.15, CH3OH). Crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the compound in CH3OH at room temperature.

Refinement

All H atoms were included in calculated positions and refined as riding atoms, with C—H = 0.98Å (CH3), 0.99Å (CH2), 0.95Å (═CH2), 1.00Å (CH), and O—H = 0.87 Å, and with Uiso(H) = 1.2 Ueq(C). H atoms of hydroxy obtained from the difference Fourier synthesized, and amended to the x, y and z coordinates and Ueq for least-squares. In the absence of significant anomalous scattering effects, Friedel pairs were merged. The choice of enantiomer was based on comparison of the optical rotation with that of related compounds with known stereochemistry.

Figures

Fig. 1.
A view of the molecular structure of compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing of compound, viewed along the a axis, showing the O—H···O hydrogen bonds as dashed lines.

Crystal data

C20H30O6F(000) = 792
Mr = 366.44Dx = 1.328 Mg m3
Monoclinic, C2Melting point = 531–533 K
Hall symbol: C 2yMo Kα radiation, λ = 0.71073 Å
a = 21.581 (11) ÅCell parameters from 3276 reflections
b = 6.111 (3) Åθ = 3.2–27.5°
c = 14.080 (7) ŵ = 0.10 mm1
β = 99.129 (8)°T = 93 K
V = 1833.3 (16) Å3Prism, colorless
Z = 40.60 × 0.18 × 0.14 mm

Data collection

Rigaku AFC10/Saturn724+ diffractometer2291 independent reflections
Radiation source: rotating anode1853 reflections with I > 2σ(I)
graphiteRint = 0.052
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.2°
phi and ω scansh = −26→27
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −7→7
Tmin = 0.944, Tmax = 0.987l = −18→16
7255 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0202P)2 + 0.356P] where P = (Fo2 + 2Fc2)/3
2291 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.31297 (8)0.1972 (3)0.27447 (11)0.0204 (4)
O20.33579 (8)0.6630 (3)0.49510 (11)0.0188 (4)
O30.32260 (8)0.5439 (3)0.06465 (11)0.0176 (4)
O40.27091 (9)0.1533 (3)0.11757 (12)0.0207 (4)
O50.22162 (10)0.5024 (3)0.43939 (12)0.0225 (5)
O60.21732 (9)0.7558 (3)0.08613 (12)0.0174 (4)
C10.35369 (11)0.7387 (4)0.40541 (16)0.0163 (6)
H10.33400.88530.39040.020*
C20.42453 (11)0.7690 (5)0.42134 (17)0.0206 (6)
H2A0.44510.63000.44470.025*
H2B0.43640.88180.47140.025*
C30.44778 (12)0.8383 (5)0.32867 (17)0.0213 (6)
H3A0.49370.86230.34240.026*
H3B0.42770.97860.30600.026*
C40.43308 (12)0.6660 (5)0.24870 (17)0.0195 (6)
C50.36084 (11)0.6243 (4)0.23254 (16)0.0148 (6)
H50.34170.76230.20310.018*
C60.34003 (12)0.4452 (4)0.15804 (16)0.0155 (6)
H60.37640.34500.15550.019*
C70.28650 (12)0.3120 (4)0.18823 (16)0.0163 (6)
C80.23046 (12)0.4508 (4)0.20869 (16)0.0147 (5)
C90.25655 (11)0.6250 (4)0.28591 (16)0.0139 (5)
H90.25540.76630.24980.017*
C100.32775 (11)0.5824 (4)0.32303 (16)0.0140 (5)
C110.21320 (11)0.6621 (5)0.36261 (16)0.0170 (6)
H110.22330.80930.39210.020*
C120.14368 (11)0.6607 (5)0.32056 (18)0.0228 (6)
H12A0.13160.80790.29460.027*
H12B0.11910.63020.37270.027*
C130.12622 (13)0.4885 (5)0.23918 (18)0.0238 (7)
H130.08450.42020.24240.029*
C140.17780 (12)0.3148 (5)0.24270 (18)0.0215 (6)
H14A0.16450.19160.19850.026*
H14B0.19070.25770.30870.026*
C150.19233 (12)0.5566 (5)0.11644 (17)0.0181 (6)
H150.18880.44850.06250.022*
C160.12735 (13)0.5961 (5)0.14211 (19)0.0292 (7)
C170.08297 (14)0.7116 (6)0.09052 (19)0.0371 (9)
H17A0.04440.73610.11320.045*
H17B0.08940.77070.03050.045*
C180.44957 (12)0.7592 (6)0.15453 (18)0.0278 (7)
H18A0.49430.79710.16360.033*
H18B0.42440.89070.13650.033*
H18C0.44060.64950.10350.033*
C190.47522 (13)0.4647 (5)0.2747 (2)0.0282 (7)
H19A0.46440.35090.22580.034*
H19B0.46890.40840.33760.034*
H19C0.51930.50650.27720.034*
C200.33680 (12)0.3413 (4)0.35333 (17)0.0168 (6)
H20A0.38200.31190.37440.020*
H20B0.31450.31220.40830.020*
H2O0.3212 (12)0.785 (5)0.5241 (19)0.029 (8)*
H3O0.3098 (15)0.433 (6)0.025 (2)0.054 (12)*
H4O0.2434 (12)0.061 (5)0.1325 (18)0.024 (8)*
H5O0.2608 (14)0.529 (5)0.4670 (18)0.025 (8)*
H6O0.2500 (13)0.724 (5)0.0724 (19)0.027 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0360 (11)0.0146 (10)0.0091 (8)−0.0002 (8)−0.0015 (7)0.0003 (8)
O20.0292 (11)0.0195 (10)0.0080 (8)0.0025 (9)0.0046 (7)0.0004 (8)
O30.0243 (10)0.0194 (11)0.0089 (9)−0.0021 (8)0.0023 (7)−0.0002 (9)
O40.0352 (12)0.0143 (10)0.0126 (9)−0.0068 (9)0.0038 (8)−0.0032 (9)
O50.0291 (12)0.0262 (11)0.0125 (9)−0.0036 (9)0.0042 (8)0.0045 (8)
O60.0238 (11)0.0163 (10)0.0120 (9)0.0011 (9)0.0024 (8)0.0024 (8)
C10.0250 (15)0.0167 (14)0.0077 (11)0.0008 (11)0.0042 (10)−0.0002 (11)
C20.0247 (15)0.0240 (15)0.0119 (12)−0.0005 (13)−0.0008 (10)−0.0062 (12)
C30.0185 (14)0.0249 (16)0.0205 (14)−0.0054 (12)0.0028 (11)−0.0045 (13)
C40.0201 (14)0.0241 (15)0.0147 (12)−0.0021 (12)0.0045 (10)−0.0046 (12)
C50.0198 (14)0.0142 (14)0.0102 (12)0.0000 (11)0.0017 (9)0.0000 (11)
C60.0187 (14)0.0179 (14)0.0090 (12)0.0012 (11)−0.0002 (10)0.0003 (11)
C70.0270 (15)0.0123 (13)0.0087 (12)−0.0012 (11)0.0000 (10)−0.0009 (11)
C80.0177 (14)0.0164 (14)0.0095 (12)−0.0043 (11)0.0004 (10)−0.0002 (11)
C90.0191 (13)0.0132 (13)0.0101 (12)−0.0001 (11)0.0040 (9)0.0027 (11)
C100.0174 (13)0.0163 (14)0.0080 (11)−0.0009 (11)0.0009 (9)−0.0018 (11)
C110.0235 (14)0.0175 (13)0.0104 (12)0.0009 (12)0.0041 (9)0.0007 (12)
C120.0180 (14)0.0295 (16)0.0219 (14)−0.0016 (13)0.0060 (10)0.0016 (14)
C130.0214 (15)0.0337 (18)0.0160 (13)−0.0112 (13)0.0026 (11)0.0010 (13)
C140.0293 (16)0.0221 (15)0.0128 (13)−0.0099 (13)0.0028 (11)−0.0025 (12)
C150.0242 (15)0.0181 (14)0.0113 (12)−0.0045 (12)0.0005 (10)0.0006 (12)
C160.0216 (15)0.046 (2)0.0193 (14)−0.0025 (15)0.0008 (11)0.0059 (15)
C170.0295 (16)0.061 (2)0.0218 (15)0.0133 (16)0.0072 (12)0.0133 (16)
C180.0257 (16)0.0389 (19)0.0207 (14)−0.0132 (14)0.0092 (11)−0.0052 (14)
C190.0194 (15)0.0378 (18)0.0268 (15)0.0035 (14)0.0020 (12)−0.0095 (15)
C200.0222 (14)0.0178 (14)0.0093 (12)0.0012 (11)−0.0008 (10)−0.0019 (11)

Geometric parameters (Å, °)

O1—C71.440 (3)C8—C141.544 (3)
O1—C201.446 (3)C8—C91.562 (3)
O2—C11.454 (3)C8—C151.563 (3)
O2—H2O0.93 (3)C9—C111.554 (3)
O3—C61.441 (3)C9—C101.564 (3)
O3—H3O0.89 (3)C9—H91.0000
O4—C71.392 (3)C10—C201.538 (4)
O4—H4O0.87 (3)C11—C121.523 (3)
O5—C111.446 (3)C11—H111.0000
O5—H5O0.89 (3)C12—C131.557 (4)
O6—C151.424 (3)C12—H12A0.9900
O6—H6O0.78 (3)C12—H12B0.9900
C1—C21.521 (3)C13—C161.520 (4)
C1—C101.538 (3)C13—C141.533 (4)
C1—H11.0000C13—H131.0000
C2—C31.530 (3)C14—H14A0.9900
C2—H2A0.9900C14—H14B0.9900
C2—H2B0.9900C15—C161.522 (4)
C3—C41.537 (3)C15—H151.0000
C3—H3A0.9900C16—C171.312 (4)
C3—H3B0.9900C17—H17A0.9500
C4—C181.536 (3)C17—H17B0.9500
C4—C191.539 (4)C18—H18A0.9800
C4—C51.560 (3)C18—H18B0.9800
C5—C61.533 (3)C18—H18C0.9800
C5—C101.577 (3)C19—H19A0.9800
C5—H51.0000C19—H19B0.9800
C6—C71.528 (3)C19—H19C0.9800
C6—H61.0000C20—H20A0.9900
C7—C81.541 (4)C20—H20B0.9900
C7—O1—C20113.34 (18)C20—C10—C1111.76 (19)
C1—O2—H2O106.4 (18)C20—C10—C9109.1 (2)
C6—O3—H3O105 (2)C1—C10—C9111.7 (2)
C7—O4—H4O112.2 (17)C20—C10—C5109.0 (2)
C11—O5—H5O101.6 (18)C1—C10—C5110.6 (2)
C15—O6—H6O105 (2)C9—C10—C5104.46 (18)
O2—C1—C2108.07 (18)O5—C11—C12106.6 (2)
O2—C1—C10110.0 (2)O5—C11—C9113.8 (2)
C2—C1—C10115.1 (2)C12—C11—C9113.18 (19)
O2—C1—H1107.8O5—C11—H11107.7
C2—C1—H1107.8C12—C11—H11107.7
C10—C1—H1107.8C9—C11—H11107.7
C1—C2—C3111.5 (2)C11—C12—C13113.5 (2)
C1—C2—H2A109.3C11—C12—H12A108.9
C3—C2—H2A109.3C13—C12—H12A108.9
C1—C2—H2B109.3C11—C12—H12B108.9
C3—C2—H2B109.3C13—C12—H12B108.9
H2A—C2—H2B108.0H12A—C12—H12B107.7
C2—C3—C4112.2 (2)C16—C13—C14102.3 (2)
C2—C3—H3A109.2C16—C13—C12109.4 (2)
C4—C3—H3A109.2C14—C13—C12110.7 (2)
C2—C3—H3B109.2C16—C13—H13111.3
C4—C3—H3B109.2C14—C13—H13111.3
H3A—C3—H3B107.9C12—C13—H13111.3
C18—C4—C3109.2 (2)C13—C14—C8100.6 (2)
C18—C4—C19107.0 (2)C13—C14—H14A111.7
C3—C4—C19109.1 (2)C8—C14—H14A111.7
C18—C4—C5107.32 (19)C13—C14—H14B111.7
C3—C4—C5107.7 (2)C8—C14—H14B111.7
C19—C4—C5116.3 (2)H14A—C14—H14B109.4
C6—C5—C4113.20 (19)O6—C15—C16110.0 (2)
C6—C5—C10108.40 (19)O6—C15—C8115.4 (2)
C4—C5—C10118.60 (19)C16—C15—C8104.6 (2)
C6—C5—H5105.1O6—C15—H15108.9
C4—C5—H5105.1C16—C15—H15108.9
C10—C5—H5105.1C8—C15—H15108.9
O3—C6—C7112.17 (19)C17—C16—C13128.0 (3)
O3—C6—C5109.4 (2)C17—C16—C15125.0 (3)
C7—C6—C5110.02 (19)C13—C16—C15107.0 (2)
O3—C6—H6108.4C16—C17—H17A120.0
C7—C6—H6108.4C16—C17—H17B120.0
C5—C6—H6108.4H17A—C17—H17B120.0
O4—C7—O1106.4 (2)C4—C18—H18A109.5
O4—C7—C6106.3 (2)C4—C18—H18B109.5
O1—C7—C6106.13 (19)H18A—C18—H18B109.5
O4—C7—C8114.2 (2)C4—C18—H18C109.5
O1—C7—C8109.18 (19)H18A—C18—H18C109.5
C6—C7—C8114.2 (2)H18B—C18—H18C109.5
C7—C8—C14113.6 (2)C4—C19—H19A109.5
C7—C8—C9107.36 (19)C4—C19—H19B109.5
C14—C8—C9110.66 (19)H19A—C19—H19B109.5
C7—C8—C15113.4 (2)C4—C19—H19C109.5
C14—C8—C1599.4 (2)H19A—C19—H19C109.5
C9—C8—C15112.4 (2)H19B—C19—H19C109.5
C11—C9—C8113.1 (2)O1—C20—C10110.87 (18)
C11—C9—C10117.39 (18)O1—C20—H20A109.5
C8—C9—C10110.2 (2)C10—C20—H20A109.5
C11—C9—H9104.9O1—C20—H20B109.5
C8—C9—H9104.9C10—C20—H20B109.5
C10—C9—H9104.9H20A—C20—H20B108.1
O2—C1—C2—C3177.3 (2)C2—C1—C10—C5−42.7 (3)
C10—C1—C2—C353.9 (3)C11—C9—C10—C2080.4 (3)
C1—C2—C3—C4−61.2 (3)C8—C9—C10—C20−51.1 (2)
C2—C3—C4—C18172.4 (2)C11—C9—C10—C1−43.6 (3)
C2—C3—C4—C19−70.9 (3)C8—C9—C10—C1−175.10 (19)
C2—C3—C4—C556.2 (3)C11—C9—C10—C5−163.1 (2)
C18—C4—C5—C665.8 (3)C8—C9—C10—C565.4 (2)
C3—C4—C5—C6−176.8 (2)C6—C5—C10—C2049.2 (2)
C19—C4—C5—C6−54.0 (3)C4—C5—C10—C20−81.7 (3)
C18—C4—C5—C10−165.6 (2)C6—C5—C10—C1172.4 (2)
C3—C4—C5—C10−48.1 (3)C4—C5—C10—C141.5 (3)
C19—C4—C5—C1074.7 (3)C6—C5—C10—C9−67.3 (2)
C4—C5—C6—O3−92.9 (2)C4—C5—C10—C9161.8 (2)
C10—C5—C6—O3133.3 (2)C8—C9—C11—O582.5 (2)
C4—C5—C6—C7143.5 (2)C10—C9—C11—O5−47.6 (3)
C10—C5—C6—C79.7 (3)C8—C9—C11—C12−39.4 (3)
C20—O1—C7—O4174.94 (19)C10—C9—C11—C12−169.5 (2)
C20—O1—C7—C662.1 (2)O5—C11—C12—C13−87.9 (2)
C20—O1—C7—C8−61.4 (3)C9—C11—C12—C1337.9 (3)
O3—C6—C7—O458.5 (3)C11—C12—C13—C16−93.9 (3)
C5—C6—C7—O4−179.55 (19)C11—C12—C13—C1418.2 (3)
O3—C6—C7—O1171.43 (19)C16—C13—C14—C845.9 (2)
C5—C6—C7—O1−66.6 (2)C12—C13—C14—C8−70.7 (2)
O3—C6—C7—C8−68.3 (3)C7—C8—C14—C13−170.51 (19)
C5—C6—C7—C853.7 (3)C9—C8—C14—C1368.7 (2)
O4—C7—C8—C1459.6 (3)C15—C8—C14—C13−49.7 (2)
O1—C7—C8—C14−59.3 (3)C7—C8—C15—O6−82.9 (3)
C6—C7—C8—C14−177.88 (18)C14—C8—C15—O6156.1 (2)
O4—C7—C8—C9−177.7 (2)C9—C8—C15—O639.0 (3)
O1—C7—C8—C963.4 (2)C7—C8—C15—C16156.0 (2)
C6—C7—C8—C9−55.2 (2)C14—C8—C15—C1635.1 (3)
O4—C7—C8—C15−53.0 (3)C9—C8—C15—C16−82.0 (3)
O1—C7—C8—C15−171.9 (2)C14—C13—C16—C17159.5 (3)
C6—C7—C8—C1569.5 (3)C12—C13—C16—C17−83.0 (4)
C7—C8—C9—C11−139.8 (2)C14—C13—C16—C15−23.7 (3)
C14—C8—C9—C11−15.3 (3)C12—C13—C16—C1593.8 (3)
C15—C8—C9—C1194.9 (2)O6—C15—C16—C1745.0 (4)
C7—C8—C9—C10−6.1 (3)C8—C15—C16—C17169.5 (3)
C14—C8—C9—C10118.4 (2)O6—C15—C16—C13−131.9 (2)
C15—C8—C9—C10−131.5 (2)C8—C15—C16—C13−7.4 (3)
O2—C1—C10—C20−43.5 (3)C7—O1—C20—C10−0.5 (3)
C2—C1—C10—C2078.9 (3)C1—C10—C20—O1−179.14 (19)
O2—C1—C10—C979.1 (2)C9—C10—C20—O156.9 (3)
C2—C1—C10—C9−158.6 (2)C5—C10—C20—O1−56.6 (3)
O2—C1—C10—C5−165.08 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2O···O5i0.93 (3)1.74 (3)2.655 (3)167 (3)
O4—H4O···O6ii0.87 (3)2.02 (3)2.696 (3)133 (2)
O3—H3O···O6iii0.89 (3)1.92 (3)2.787 (3)164 (3)
O5—H5O···O20.89 (3)1.80 (3)2.652 (3)160 (3)
O6—H6O···O30.78 (3)1.93 (3)2.674 (3)157 (3)

Symmetry codes: (i) −x+1/2, y+1/2, −z+1; (ii) x, y−1, z; (iii) −x+1/2, y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2628).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2008). CrystalClear Rigaku Corporation, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1995). SHELXTL Siemens Industrial Automation Inc., Analytical Instrumentation, Madison, Wisconsin, USA.
  • Sun, H. D., Xu, Y. L. & Jiang, B. (2001). Diterpenoids from Isodon Species, pp. 4–17, 239. Beijing: Science Press.
  • Wang, X. R., Hu, H. P., Wang, H. P., Wang, S. Q., Ueda, S. & Fujita, T. (1994). Phytochemistry, 37, 1367–1370.
  • Yan, F. L., Wang, C. M., Guo, L. Q., Zhang, J. X. & Sun, H. D. (2008). J. Chem. Res.9, 522–524.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography