PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o299.
Published online 2010 January 9. doi:  10.1107/S1600536809055706
PMCID: PMC2979981

N-[4-(p-Toluenesulfonamido)phen­ylsulfon­yl]acetamide

Abstract

In the title compound, C15H16N2O5S2, the dihedral between the two aromatic rings is 81.33 (6)°. In the crystal, pairs of N—H(...)O hydrogen bonds link the mol­ecules into centrosymmetric dimers, which are further connected via N—H(...)O hydrogen bonds into a chain running along [An external file that holds a picture, illustration, etc.
Object name is e-66-0o299-efi1.jpg01].

Related literature

For the synthesis and biological activity of the title compound, see: Deng & Mani (2006 [triangle]). For a related structure, see: Ashfaq et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o299-scheme1.jpg

Experimental

Crystal data

  • C15H16N2O5S2
  • M r = 368.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o299-efi2.jpg
  • a = 9.8077 (4) Å
  • b = 10.0782 (4) Å
  • c = 17.3081 (7) Å
  • β = 100.290 (2)°
  • V = 1683.28 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 296 K
  • 0.48 × 0.14 × 0.05 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.852, T max = 0.981
  • 16294 measured reflections
  • 3715 independent reflections
  • 2787 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.114
  • S = 1.02
  • 3715 reflections
  • 225 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809055706/bt5152sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055706/bt5152Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant for the project to strengthen the Materials Chemistry Laboratory at GC University Lahore, Pakistan.

supplementary crystallographic information

Comment

The bond angles and length are in comparison with the previously published crystal structure of N-Acetyl-4-(benzenesulfonamido)benzenesulfonamide (II) (Ashfaq et al., 2009). The dihedral angle between the two aromatic rings is 81.33( 0.06 )° , the acetamido group is oriented at 79.13( 0.11 )° and 14.42 ( 0.26 )° with respect to the central aromatic ring (C7/C8/C9/C10/C11/C12) and toluene ring. The compound may be stabilized by the formation of N–H···O type hydrogen bondings. The acitamido N–H interact with oxygen of C==O moiety and forms a R22(20) ring. The hydrogen bonding interaction between the sulfonamido N–H and SO2 gives rise in the formation of infite long chain along [-1 0 1] (Fig. 2 Table, 1).

Experimental

The title compound was prepared using a literature method (Deng & Mani, 2006). Sodium sulphacetamide (2 g, 9.3 mmol) was dissolved in distilled water, and then toluene sulfonyl chloride (1.77 g, 9.3 mmol) was added with stirring at room temperature. The pH was maintained at 8-9, strictly using Na2CO3 (1 M). The completion of reaction was observed by the consumption of the suspended toluene sulfonyl chloride. On completion, pH was adjusted to 2-3 using HCl (2 N). The precipitate formed was filtered, washed with distilled water and recrystalyzed from methanol.

Refinement

The H-atoms bonded to C were positioned geometrically and refined using a riding model with C–H = 0.93 Å, U(H) = 1.2 Ueq(C) for aromatic and C–H = 0.96 Å for CH3, U(H) = 1.5 Ueq(C) for CH3. The N-H H atoms were located in difference map and their coordinates were refined with U(H) = 1.2 Ueq(N) for N atoms.

Figures

Fig. 1.
The structure of the title compound with atomic label and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Packing diagram for the title compound with hydrogen bonding drawn as dashed lines. Hydrogen atoms not involve in hydrogen bonding have been omitted.

Crystal data

C15H16N2O5S2F(000) = 768
Mr = 368.42Dx = 1.454 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4606 reflections
a = 9.8077 (4) Åθ = 2.4–26.8°
b = 10.0782 (4) ŵ = 0.34 mm1
c = 17.3081 (7) ÅT = 296 K
β = 100.290 (2)°Needle, red
V = 1683.28 (12) Å30.48 × 0.14 × 0.05 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer3715 independent reflections
Radiation source: fine-focus sealed tube2787 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 27.1°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −11→12
Tmin = 0.852, Tmax = 0.981k = −12→12
16294 measured reflectionsl = −22→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0603P)2 + 0.5119P] where P = (Fo2 + 2Fc2)/3
3715 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.58372 (5)0.79324 (5)1.04610 (3)0.03142 (15)
S20.91252 (5)0.97819 (6)0.73350 (3)0.03660 (16)
O10.55834 (15)0.82933 (16)1.12253 (9)0.0429 (4)
O20.47119 (14)0.75141 (16)0.98763 (9)0.0422 (4)
O30.82154 (16)0.9285 (2)0.66630 (9)0.0553 (5)
O40.96901 (18)1.10836 (16)0.73294 (11)0.0532 (5)
O51.16225 (16)0.96040 (18)0.85525 (9)0.0501 (4)
N10.65425 (17)0.92526 (18)1.01581 (10)0.0315 (4)
H1N0.693 (2)0.971 (2)1.0518 (14)0.038*
N21.04204 (18)0.86957 (19)0.74560 (10)0.0341 (4)
H2N1.034 (2)0.811 (2)0.7122 (14)0.041*
C10.9121 (2)0.4715 (2)1.08120 (15)0.0427 (5)
C20.9326 (2)0.5914 (2)1.12183 (15)0.0470 (6)
H21.01460.60521.15720.056*
C30.8338 (2)0.6893 (2)1.11050 (13)0.0413 (5)
H30.84850.76861.13820.050*
C40.7115 (2)0.6690 (2)1.05720 (12)0.0316 (4)
C50.6907 (2)0.5522 (2)1.01500 (13)0.0382 (5)
H50.61000.53950.97840.046*
C60.7907 (2)0.4546 (2)1.02772 (15)0.0436 (5)
H60.77610.37560.99970.052*
C70.71121 (19)0.93381 (19)0.94715 (11)0.0278 (4)
C80.8064 (2)1.0347 (2)0.94356 (13)0.0404 (5)
H80.82911.09270.98560.048*
C90.8672 (2)1.0495 (2)0.87847 (14)0.0422 (5)
H90.93051.11760.87640.051*
C100.83393 (19)0.9629 (2)0.81628 (12)0.0306 (4)
C110.7379 (2)0.8629 (2)0.81853 (12)0.0330 (5)
H110.71520.80550.77610.040*
C120.6760 (2)0.8483 (2)0.88342 (12)0.0326 (5)
H120.61100.78150.88470.039*
C131.1547 (2)0.8753 (2)0.80521 (12)0.0354 (5)
C141.2619 (3)0.7714 (3)0.80379 (15)0.0567 (7)
H14A1.33950.80900.78470.085*
H14B1.22340.70030.76980.085*
H14C1.29210.73770.85590.085*
C151.0205 (3)0.3644 (3)1.09553 (19)0.0622 (8)
H15A1.10450.39591.08060.093*
H15B0.98820.28761.06490.093*
H15C1.03810.34141.15020.093*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0265 (2)0.0369 (3)0.0317 (3)−0.0007 (2)0.00741 (19)0.0050 (2)
S20.0365 (3)0.0453 (3)0.0291 (3)0.0072 (2)0.0089 (2)0.0104 (2)
O10.0458 (9)0.0506 (10)0.0363 (9)0.0046 (7)0.0186 (7)0.0054 (7)
O20.0288 (7)0.0490 (9)0.0467 (9)−0.0064 (7)0.0012 (7)0.0068 (7)
O30.0435 (9)0.0934 (14)0.0263 (8)0.0096 (9)−0.0005 (7)0.0080 (9)
O40.0615 (11)0.0412 (9)0.0638 (11)0.0059 (8)0.0301 (9)0.0200 (9)
O50.0470 (9)0.0621 (11)0.0386 (9)−0.0020 (8)0.0001 (7)−0.0165 (8)
N10.0343 (9)0.0320 (10)0.0286 (9)−0.0029 (7)0.0069 (7)−0.0014 (7)
N20.0366 (9)0.0396 (11)0.0259 (9)0.0044 (8)0.0051 (7)−0.0057 (8)
C10.0388 (12)0.0384 (13)0.0519 (14)0.0012 (10)0.0107 (10)0.0152 (11)
C20.0344 (11)0.0510 (15)0.0502 (15)0.0006 (10)−0.0070 (10)0.0055 (12)
C30.0388 (12)0.0413 (13)0.0412 (13)−0.0034 (10)0.0004 (9)−0.0022 (10)
C40.0293 (10)0.0340 (11)0.0314 (11)−0.0024 (8)0.0054 (8)0.0043 (9)
C50.0334 (11)0.0390 (12)0.0408 (12)−0.0047 (9)0.0024 (9)0.0011 (10)
C60.0458 (13)0.0312 (12)0.0541 (15)−0.0019 (10)0.0095 (11)−0.0002 (11)
C70.0261 (9)0.0279 (10)0.0294 (10)0.0036 (8)0.0048 (7)0.0034 (8)
C80.0468 (12)0.0374 (12)0.0399 (13)−0.0130 (10)0.0157 (10)−0.0106 (10)
C90.0472 (12)0.0362 (12)0.0474 (14)−0.0133 (10)0.0203 (10)−0.0059 (10)
C100.0299 (10)0.0337 (11)0.0290 (10)0.0040 (8)0.0077 (8)0.0049 (9)
C110.0343 (10)0.0363 (12)0.0270 (10)−0.0003 (9)0.0014 (8)−0.0019 (9)
C120.0298 (10)0.0345 (11)0.0328 (11)−0.0069 (8)0.0035 (8)−0.0002 (9)
C130.0328 (10)0.0478 (13)0.0260 (11)0.0016 (9)0.0069 (8)0.0010 (10)
C140.0453 (14)0.080 (2)0.0434 (14)0.0217 (13)0.0050 (11)−0.0013 (13)
C150.0514 (15)0.0450 (15)0.092 (2)0.0109 (12)0.0188 (14)0.0226 (15)

Geometric parameters (Å, °)

S1—O21.4215 (15)C5—C61.379 (3)
S1—O11.4359 (15)C5—H50.9300
S1—N11.6289 (18)C6—H60.9300
S1—C41.758 (2)C7—C81.389 (3)
S2—O31.4244 (17)C7—C121.394 (3)
S2—O41.4247 (18)C8—C91.374 (3)
S2—N21.6615 (18)C8—H80.9300
S2—C101.751 (2)C9—C101.379 (3)
O5—C131.211 (3)C9—H90.9300
N1—C71.403 (2)C10—C111.385 (3)
N1—H1N0.81 (2)C11—C121.377 (3)
N2—C131.372 (3)C11—H110.9300
N2—H2N0.82 (2)C12—H120.9300
C1—C61.382 (3)C13—C141.488 (3)
C1—C21.394 (4)C14—H14A0.9600
C1—C151.504 (3)C14—H14B0.9600
C2—C31.372 (3)C14—H14C0.9600
C2—H20.9300C15—H15A0.9600
C3—C41.392 (3)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C4—C51.381 (3)
O2—S1—O1119.38 (9)C1—C6—H6119.3
O2—S1—N1109.48 (9)C8—C7—C12119.38 (18)
O1—S1—N1104.07 (9)C8—C7—N1117.08 (18)
O2—S1—C4108.32 (10)C12—C7—N1123.53 (18)
O1—S1—C4108.50 (9)C9—C8—C7120.7 (2)
N1—S1—C4106.35 (9)C9—C8—H8119.7
O3—S2—O4120.38 (11)C7—C8—H8119.7
O3—S2—N2102.99 (10)C8—C9—C10119.6 (2)
O4—S2—N2108.54 (10)C8—C9—H9120.2
O3—S2—C10109.52 (10)C10—C9—H9120.2
O4—S2—C10108.37 (10)C9—C10—C11120.42 (19)
N2—S2—C10106.09 (9)C9—C10—S2120.36 (16)
C7—N1—S1125.38 (15)C11—C10—S2119.22 (16)
C7—N1—H1N114.3 (17)C12—C11—C10120.14 (19)
S1—N1—H1N112.5 (17)C12—C11—H11119.9
C13—N2—S2124.19 (16)C10—C11—H11119.9
C13—N2—H2N121.9 (17)C11—C12—C7119.76 (19)
S2—N2—H2N113.9 (17)C11—C12—H12120.1
C6—C1—C2118.3 (2)C7—C12—H12120.1
C6—C1—C15121.4 (2)O5—C13—N2120.4 (2)
C2—C1—C15120.3 (2)O5—C13—C14123.8 (2)
C3—C2—C1121.1 (2)N2—C13—C14115.8 (2)
C3—C2—H2119.5C13—C14—H14A109.5
C1—C2—H2119.5C13—C14—H14B109.5
C2—C3—C4119.5 (2)H14A—C14—H14B109.5
C2—C3—H3120.2C13—C14—H14C109.5
C4—C3—H3120.2H14A—C14—H14C109.5
C5—C4—C3120.3 (2)H14B—C14—H14C109.5
C5—C4—S1120.96 (16)C1—C15—H15A109.5
C3—C4—S1118.77 (17)C1—C15—H15B109.5
C6—C5—C4119.3 (2)H15A—C15—H15B109.5
C6—C5—H5120.3C1—C15—H15C109.5
C4—C5—H5120.3H15A—C15—H15C109.5
C5—C6—C1121.5 (2)H15B—C15—H15C109.5
C5—C6—H6119.3
O2—S1—N1—C7−58.48 (18)C15—C1—C6—C5179.4 (2)
O1—S1—N1—C7172.83 (16)S1—N1—C7—C8−158.64 (16)
C4—S1—N1—C758.34 (18)S1—N1—C7—C1222.1 (3)
O3—S2—N2—C13−178.58 (18)C12—C7—C8—C9−0.9 (3)
O4—S2—N2—C1352.8 (2)N1—C7—C8—C9179.8 (2)
C10—S2—N2—C13−63.5 (2)C7—C8—C9—C10−0.3 (4)
C6—C1—C2—C31.4 (4)C8—C9—C10—C111.2 (3)
C15—C1—C2—C3−178.9 (2)C8—C9—C10—S2−178.87 (18)
C1—C2—C3—C4−0.4 (4)O3—S2—C10—C9−151.90 (18)
C2—C3—C4—C5−1.1 (3)O4—S2—C10—C9−18.8 (2)
C2—C3—C4—S1177.79 (18)N2—S2—C10—C997.58 (19)
O2—S1—C4—C5−2.5 (2)O3—S2—C10—C1128.04 (19)
O1—S1—C4—C5128.50 (18)O4—S2—C10—C11161.13 (16)
N1—S1—C4—C5−120.07 (18)N2—S2—C10—C11−82.47 (17)
O2—S1—C4—C3178.62 (17)C9—C10—C11—C12−0.8 (3)
O1—S1—C4—C3−50.4 (2)S2—C10—C11—C12179.30 (16)
N1—S1—C4—C361.02 (19)C10—C11—C12—C7−0.5 (3)
C3—C4—C5—C61.7 (3)C8—C7—C12—C111.3 (3)
S1—C4—C5—C6−177.20 (17)N1—C7—C12—C11−179.41 (18)
C4—C5—C6—C1−0.7 (3)S2—N2—C13—O52.9 (3)
C2—C1—C6—C5−0.8 (4)S2—N2—C13—C14−177.73 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.81 (2)2.06 (2)2.848 (2)162 (2)
N2—H2N···O1ii0.82 (2)2.15 (2)2.950 (2)167 (2)

Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) x+1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5152).

References

  • Ashfaq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Saeed-ul-Hassan, S. (2009). Acta Cryst. E65, o1180.
  • Bruker (2007). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Deng, X. & Mani, N. S. (2006). Green Chem.8, 835–838.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography