PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. Feb 1, 2010; 66(Pt 2): o279.
Published online Jan 9, 2010. doi:  10.1107/S1600536809054749
PMCID: PMC2979980
(E)-3-(4-Bromo­phen­yl)-3-[3-(4-bromo­phen­yl)-1H-pyrazol-1-yl]prop-2-enal
P. Ramesh,a Ramaiyan Manikannan,b S. Muthusubramanian,b K. Ravichandran,a and M. N. Ponnuswamya*
aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
Correspondence e-mail: mnpsy2004/at/yahoo.com
Received December 17, 2009; Accepted December 19, 2009.
Abstract
There are two crystallographically independent mol­ecules in the asymmetric unit of the title compound, C18H12Br2N2O. In each mol­ecule, one of the bromo­phenyl rings lies almost in the plane of pyrazole unit [dihedral angles of 5.8 (3)° in the first mol­ecule and and 5.1 (3)° in the second] while the other ring is approximately perpendicular to it [dihedral angles of 80.3 (3) and 76.5 (3)°]. The crystal packing shows inter­molecular C—H(...)O inter­actions. The crystal studied was a racemic twin.
Related literature
For the pharmacological and medicinal properties of pyrazole derivatives, see: Baraldi et al. (1998 [triangle]); Bruno et al. (1990 [triangle]); Cottineau et al. (2002 [triangle]); Londershausen (1996 [triangle]); Chen & Li (1998 [triangle]); Mishra et al. (1998 [triangle]); Smith et al. (2001 [triangle]). For a related structure, see: Jin et al. (2004 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-66-0o279-scheme1.jpg Object name is e-66-0o279-scheme1.jpg
Crystal data
  • C18H12Br2N2O
  • M r = 432.12
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o279-efi1.jpg
  • a = 9.2600 (3) Å
  • b = 9.3782 (3) Å
  • c = 37.9965 (4) Å
  • V = 3299.70 (15) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 4.92 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.16 mm
Data collection
  • Bruker Kappa APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.319, T max = 0.455
  • 17654 measured reflections
  • 5353 independent reflections
  • 3562 reflections with I > 2σ(I)
  • R int = 0.032
Refinement
  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.086
  • S = 1.01
  • 5353 reflections
  • 416 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.94 e Å−3
  • Δρmin = −0.68 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1831 Friedel pairs
  • Flack parameter: 0.226 (12)
Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, (1997 [triangle])); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).
Table 1
Table 1
Hydrogen-bond geometry (Å, °)
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809054749/bt5143sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054749/bt5143Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
PR thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection.
supplementary crystallographic information
Comment
Pyrazole derivatives possess significant antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998), and pesticidal (Londershausen et al., 1996) properties. Some pyrazole derivatives are successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra et al., 1998) and anti-inflammatory (Smith et al., 2001) activities. The crystallographic study of the title compound has been carried out to establish the molecular structure.
An ORTEP plot of the molecule is shown in Fig. 1. There are two crystallographically independent molecules in the asymmetric unit. One of the bromophenyl rings lies almost in the plane of the pyrazole moiety and the other ring is approximately perpendicular to it [dihidral angles [5.8 (3)° for C15A—C20A ring and 5.1 (3)° for C15B—C20B ring; 80.3 (3)° for C7A—C12A ring and 76.5 (3)° for C7B—C12B ring]. The vinyl aldehyde groups adopt extended conformation [C6A—C13A—C14A—O1A = -177.9 (7)° for molecule A and 179.4 (7)° for molecule B]. The sum of the bond angles at atoms N2A (359.9°) and N2B (360.0°) of the pyrazole ring in both molecules are in accordance with sp2 hybridization.
The molecular conformation is stabilized by weak intra molecular C—H···N interactions. The crystal packing shows intermolecular C—H···O interactions. Atom C8B at (x, y, z) donates a proton to atom O1B at (x - 1/2, -y, z), forming a C7 (Bernstein, 1995) zigzag chain running along the a axis as shown in Fig. 2
Experimental
To a mixture of 1-(4-bromophenyl)-1-ethanone N-[(E)-1-(4-bromophenyl)ethylidene] hydrazone (0.003 mole) and 3 ml of dimethyl formamide kept in an ice bath at 0°C, phosphorus oxycholride (0.024 mole) was added dropwise for 5–10 minutes. The reaction mixture was then kept in a microwave oven at 600 W for 30–60 sec. The process of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and extracted with dichloromethane. The organic layer was dried with anhydrous sodium sulfate. The different compounds present in the mixture were separated by column chromatography using petroleum ether and ethyl acetate mixture as eluent. This isolated compound was rectystalized in dichloromethane.
Refinement
All H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for all H atoms.
Figures
Fig. 1.
Fig. 1.
Perspective view of one of the two molecules in the asymmetric unit with the atomic numbering and 50% probability displacement ellipsoids.
Fig. 2.
Fig. 2.
The crystal packing of the molecules viewed down c–axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
Crystal data
C18H12Br2N2OF(000) = 1696
Mr = 432.12Dx = 1.740 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2356 reflections
a = 9.2600 (3) Åθ = 2.1–26.7°
b = 9.3782 (3) ŵ = 4.92 mm1
c = 37.9965 (4) ÅT = 293 K
V = 3299.70 (15) Å3Block, colorless
Z = 80.30 × 0.20 × 0.16 mm
Data collection
Bruker Kappa APEXII diffractometer5353 independent reflections
Radiation source: fine-focus sealed tube3562 reflections with I > 2σ(I)
graphiteRint = 0.032
ω and [var phi] scansθmax = 26.7°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −9→11
Tmin = 0.319, Tmax = 0.455k = −11→8
17654 measured reflectionsl = −47→28
Refinement
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.086w = 1/[σ2(Fo2) + (0.0332P)2 + 2.8025P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
5353 reflectionsΔρmax = 0.94 e Å3
416 parametersΔρmin = −0.68 e Å3
2 restraintsAbsolute structure: Flack (1983), 1831 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.226 (12)
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
Br1A1.06404 (10)0.03442 (11)1.04136 (2)0.0845 (3)
Br1B−0.30627 (8)0.54380 (9)0.52040 (2)0.0701 (2)
Br2A0.53252 (8)0.16474 (8)0.66987 (2)0.0689 (2)
Br2B0.20118 (8)0.34086 (8)0.888391 (19)0.0687 (2)
O1A0.4407 (6)0.3862 (6)0.94905 (14)0.0893 (18)
O1B0.2716 (6)0.0770 (5)0.61274 (14)0.0782 (15)
N1A0.6924 (5)0.1737 (5)0.84642 (15)0.0441 (13)
N1B0.0394 (5)0.3223 (5)0.71192 (13)0.0386 (12)
N2A0.7688 (5)0.1414 (5)0.87580 (13)0.0394 (12)
N2B−0.0373 (5)0.3565 (5)0.68274 (13)0.0401 (12)
C3A0.8905 (7)0.0679 (6)0.86725 (18)0.0456 (16)
H3A0.95950.03390.88290.055*
C3B−0.1573 (6)0.4349 (6)0.69043 (19)0.0427 (16)
H3B−0.22410.47090.67450.051*
C4A0.8933 (7)0.0536 (6)0.83279 (19)0.0451 (16)
H4A0.96370.00770.81950.054*
C4B−0.1601 (6)0.4502 (6)0.72623 (17)0.0409 (15)
H4B−0.22920.49720.73970.049*
C5A0.7689 (6)0.1212 (6)0.82008 (16)0.0357 (14)
C5B−0.0348 (7)0.3788 (6)0.73838 (16)0.0358 (14)
C6A0.7229 (7)0.1875 (6)0.90911 (18)0.0466 (17)
C6B0.0081 (6)0.3060 (6)0.64915 (17)0.0390 (15)
C7A0.8119 (7)0.1444 (7)0.93918 (16)0.0429 (16)
C7B−0.0733 (6)0.3630 (7)0.61901 (16)0.0409 (16)
C8A0.9017 (7)0.2424 (7)0.95476 (18)0.0520 (17)
H8A0.91110.33330.94520.062*
C8B−0.1625 (7)0.2773 (7)0.59906 (18)0.0468 (16)
H8B−0.17450.18180.60500.056*
C9A0.9776 (8)0.2055 (8)0.9845 (2)0.063 (2)
H9A1.03770.27250.99510.076*
C9B−0.2332 (7)0.3330 (7)0.57053 (18)0.0527 (17)
H9B−0.29600.27590.55770.063*
C10A0.9667 (7)0.0750 (8)0.99855 (18)0.0523 (17)
C10B−0.2125 (7)0.4713 (7)0.56087 (19)0.0478 (17)
C11A0.8816 (9)−0.0234 (8)0.9832 (2)0.059 (2)
H11A0.8749−0.11400.99300.070*
C11B−0.1234 (7)0.5587 (7)0.58027 (18)0.0486 (17)
H11B−0.11000.65350.57380.058*
C12A0.8043 (8)0.0080 (7)0.9532 (3)0.058 (2)
H12A0.7477−0.06150.94250.069*
C12B−0.0553 (8)0.5044 (7)0.6090 (2)0.053 (2)
H12B0.00460.56310.62230.064*
C13A0.6043 (7)0.2674 (7)0.91238 (19)0.0581 (18)
H13A0.55400.29240.89210.070*
C13B0.1155 (7)0.2129 (6)0.64759 (17)0.0480 (16)
H130.15560.17940.66850.058*
C14A0.5513 (8)0.3163 (7)0.9454 (2)0.063 (2)
H14A0.60390.29360.96550.076*
C14B0.1728 (8)0.1613 (7)0.61425 (19)0.0554 (18)
H140.13200.19410.59340.067*
C15A0.7154 (6)0.1352 (6)0.78364 (17)0.0375 (15)
C15B0.0164 (6)0.3646 (6)0.77424 (17)0.0360 (14)
C16A0.7845 (7)0.0686 (6)0.75603 (19)0.0472 (17)
H16A0.86730.01530.76040.057*
C16B−0.0520 (7)0.4315 (6)0.80212 (18)0.0428 (16)
H16B−0.13550.48370.79780.051*
C17A0.7334 (7)0.0793 (6)0.72186 (18)0.0464 (16)
H17A0.78220.03610.70330.056*
C17B−0.0001 (7)0.4232 (7)0.83575 (18)0.0494 (17)
H17B−0.04790.46950.85400.059*
C18A0.6105 (7)0.1544 (6)0.71609 (16)0.0420 (15)
C18B0.1237 (7)0.3455 (6)0.84255 (17)0.0435 (15)
C19A0.5396 (6)0.2233 (7)0.74279 (19)0.0456 (16)
H19A0.45660.27580.73810.055*
C19B0.1903 (6)0.2769 (7)0.81560 (18)0.0470 (17)
H19B0.27260.22310.82010.056*
C20A0.5924 (6)0.2141 (6)0.77660 (17)0.0413 (15)
H20A0.54510.26120.79480.050*
C20B0.1383 (7)0.2854 (6)0.78198 (18)0.0398 (15)
H20B0.18580.23720.76400.048*
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
Br1A0.0906 (6)0.1116 (6)0.0512 (5)0.0180 (5)−0.0083 (5)0.0153 (5)
Br1B0.0723 (5)0.0778 (5)0.0601 (6)0.0001 (4)−0.0177 (4)0.0176 (5)
Br2A0.0836 (5)0.0759 (5)0.0474 (4)0.0057 (4)−0.0086 (4)0.0055 (4)
Br2B0.0748 (5)0.0871 (5)0.0442 (4)0.0013 (5)−0.0060 (4)0.0059 (4)
O1A0.096 (4)0.116 (4)0.056 (3)0.053 (4)−0.002 (3)−0.022 (3)
O1B0.082 (4)0.077 (3)0.075 (4)0.032 (3)0.016 (3)−0.012 (3)
N1A0.037 (3)0.049 (3)0.046 (4)0.004 (3)0.009 (3)0.002 (3)
N1B0.042 (3)0.044 (3)0.029 (3)0.001 (2)0.001 (2)−0.001 (2)
N2A0.040 (3)0.044 (3)0.035 (3)0.003 (2)0.003 (3)−0.001 (2)
N2B0.043 (3)0.040 (3)0.038 (3)0.008 (3)0.002 (3)−0.006 (2)
C3A0.046 (4)0.044 (4)0.047 (4)0.001 (3)−0.003 (3)−0.012 (3)
C3B0.033 (3)0.036 (4)0.059 (5)0.009 (3)−0.001 (3)0.002 (3)
C4A0.049 (4)0.029 (3)0.058 (5)−0.001 (3)0.003 (4)−0.013 (4)
C4B0.033 (3)0.046 (4)0.044 (4)0.005 (3)0.006 (3)−0.002 (4)
C5A0.033 (3)0.030 (3)0.044 (4)−0.002 (3)0.005 (3)−0.001 (3)
C5B0.045 (4)0.025 (3)0.038 (4)−0.007 (3)0.003 (3)0.002 (3)
C6A0.050 (4)0.044 (4)0.046 (5)−0.003 (3)0.007 (3)−0.002 (3)
C6B0.039 (3)0.041 (4)0.037 (4)−0.006 (3)−0.002 (3)0.000 (3)
C7A0.047 (4)0.045 (4)0.037 (4)−0.004 (3)0.002 (3)0.002 (3)
C7B0.045 (4)0.041 (4)0.037 (4)0.004 (3)0.004 (3)−0.002 (3)
C8A0.055 (4)0.045 (4)0.055 (4)−0.004 (3)−0.012 (4)0.008 (3)
C8B0.046 (4)0.036 (3)0.058 (4)−0.009 (3)−0.004 (3)−0.002 (3)
C9A0.057 (4)0.067 (5)0.066 (5)−0.007 (4)−0.007 (4)−0.009 (4)
C9B0.053 (4)0.053 (4)0.053 (4)−0.004 (3)−0.017 (4)−0.009 (4)
C10A0.050 (4)0.059 (5)0.048 (4)0.005 (4)0.004 (3)0.006 (4)
C10B0.046 (4)0.047 (4)0.050 (5)0.002 (3)−0.007 (3)0.007 (3)
C11A0.081 (5)0.039 (4)0.056 (5)0.012 (4)0.010 (4)0.017 (4)
C11B0.058 (4)0.039 (4)0.048 (4)−0.005 (3)0.000 (4)0.003 (3)
C12A0.074 (6)0.034 (4)0.064 (6)−0.007 (3)−0.001 (5)0.002 (3)
C12B0.059 (6)0.054 (5)0.046 (5)−0.010 (3)−0.013 (4)−0.001 (3)
C13A0.059 (5)0.069 (4)0.046 (4)0.011 (4)0.000 (3)−0.008 (4)
C13B0.056 (4)0.049 (4)0.039 (4)0.009 (3)−0.001 (3)0.007 (3)
C14A0.063 (5)0.078 (5)0.049 (4)0.015 (4)0.000 (3)−0.012 (4)
C14B0.063 (5)0.056 (4)0.048 (5)0.010 (4)0.006 (4)−0.003 (4)
C15A0.040 (4)0.032 (3)0.041 (4)−0.008 (3)0.010 (3)−0.004 (3)
C15B0.038 (3)0.028 (3)0.042 (4)−0.003 (3)0.007 (3)0.001 (3)
C16A0.037 (4)0.046 (4)0.058 (5)0.006 (3)0.003 (3)−0.006 (4)
C16B0.043 (4)0.040 (4)0.045 (4)0.004 (3)−0.002 (3)−0.004 (4)
C17A0.052 (4)0.042 (4)0.046 (4)0.004 (3)0.003 (3)−0.006 (3)
C17B0.050 (4)0.058 (4)0.040 (4)0.005 (4)0.009 (3)−0.015 (3)
C18A0.048 (4)0.035 (3)0.043 (4)−0.001 (3)0.000 (3)0.007 (3)
C18B0.045 (4)0.045 (4)0.040 (4)−0.006 (3)0.000 (3)0.004 (3)
C19A0.039 (4)0.046 (4)0.052 (5)0.000 (3)0.005 (3)0.003 (3)
C19B0.039 (4)0.048 (4)0.054 (5)0.006 (3)0.010 (3)0.009 (3)
C20A0.035 (3)0.047 (4)0.043 (4)0.006 (3)0.009 (3)−0.001 (3)
C20B0.046 (3)0.036 (4)0.038 (4)0.002 (3)0.007 (3)−0.001 (3)
Geometric parameters (Å, °)
Br1A—C10A1.898 (7)C8B—H8B0.9300
Br1B—C10B1.892 (7)C9A—C10A1.339 (9)
Br2A—C18A1.901 (6)C9A—H9A0.9300
Br2B—C18B1.884 (6)C9B—C10B1.361 (8)
O1A—C14A1.224 (8)C9B—H9B0.9300
O1B—C14B1.210 (8)C10A—C11A1.347 (10)
N1A—C5A1.321 (8)C10B—C11B1.377 (9)
N1A—N2A1.356 (7)C11A—C12A1.375 (12)
N1B—C5B1.328 (7)C11A—H11A0.9300
N1B—N2B1.355 (6)C11B—C12B1.361 (10)
N2A—N1A1.356 (7)C11B—H11B0.9300
N2A—C3A1.361 (8)C12A—H12A0.9300
N2A—C6A1.403 (8)C12B—H12B0.9300
N2B—N1B1.355 (6)C13A—C14A1.424 (10)
N2B—C3B1.363 (7)C13A—H13A0.9300
N2B—C6B1.425 (8)C13B—C14B1.456 (9)
C3A—C4A1.316 (9)C13B—H130.9300
C3A—H3A0.9300C14A—H14A0.9300
C3B—C4B1.368 (8)C14B—H140.9300
C3B—H3B0.9300C15A—C16A1.379 (8)
C4A—C5A1.401 (9)C15A—C20A1.384 (8)
C4A—H4A0.9300C15B—C20B1.382 (8)
C4B—C5B1.416 (9)C15B—C16B1.384 (8)
C4B—H4B0.9300C16A—C17A1.385 (9)
C5A—N1A1.321 (8)C16A—H16A0.9300
C5A—C15A1.477 (8)C16B—C17B1.367 (9)
C5B—N1B1.328 (7)C16B—H16B0.9300
C5B—C15B1.449 (8)C17A—C18A1.356 (8)
C6A—C13A1.336 (8)C17A—H17A0.9300
C6A—C7A1.465 (9)C17B—C18B1.383 (9)
C6B—C13B1.325 (8)C17B—H17B0.9300
C6B—C7B1.471 (8)C18A—C19A1.371 (9)
C7A—C8A1.374 (9)C18B—C19B1.358 (9)
C7A—C12A1.388 (9)C19A—C20A1.377 (9)
C7B—C8B1.379 (8)C19A—H19A0.9300
C7B—C12B1.389 (9)C19B—C20B1.367 (9)
C8A—C9A1.375 (9)C19B—H19B0.9300
C8A—H8A0.9300C20A—H20A0.9300
C8B—C9B1.370 (9)C20B—H20B0.9300
C5A—N1A—N2A105.1 (5)C10A—C11A—C12A121.1 (6)
C5B—N1B—N2B104.7 (5)C10A—C11A—H11A119.4
N1A—N2A—C3A110.4 (5)C12A—C11A—H11A119.4
N1A—N2A—C6A121.0 (5)C12B—C11B—C10B119.0 (6)
C3A—N2A—C6A128.5 (6)C12B—C11B—H11B120.5
N1B—N2B—C3B112.3 (5)C10B—C11B—H11B120.5
N1B—N2B—C6B120.0 (5)C11A—C12A—C7A119.3 (7)
C3B—N2B—C6B127.7 (5)C11A—C12A—H12A120.4
C4A—C3A—N2A107.8 (6)C7A—C12A—H12A120.4
C4A—C3A—H3A126.1C11B—C12B—C7B121.4 (7)
N2A—C3A—H3A126.1C11B—C12B—H12B119.3
N2B—C3B—C4B106.6 (6)C7B—C12B—H12B119.3
N2B—C3B—H3B126.7C6A—C13A—C14A123.1 (7)
C4B—C3B—H3B126.7C6A—C13A—H13A118.5
C3A—C4A—C5A106.3 (6)C14A—C13A—H13A118.5
C3A—C4A—H4A126.8C6B—C13B—C14B122.1 (6)
C5A—C4A—H4A126.8C6B—C13B—H13118.9
C3B—C4B—C5B105.0 (6)C14B—C13B—H13118.9
C3B—C4B—H4B127.5O1A—C14A—C13A124.0 (7)
C5B—C4B—H4B127.5O1A—C14A—H14A118.0
N1A—C5A—C4A110.4 (6)C13A—C14A—H14A118.0
N1A—C5A—C4A110.4 (6)O1B—C14B—C13B122.3 (7)
N1A—C5A—C15A119.8 (5)O1B—C14B—H14118.9
N1A—C5A—C15A119.8 (5)C13B—C14B—H14118.9
C4A—C5A—C15A129.8 (6)C16A—C15A—C20A118.5 (6)
N1B—C5B—C4B111.4 (6)C16A—C15A—C5A121.2 (5)
N1B—C5B—C4B111.4 (6)C20A—C15A—C5A120.3 (6)
N1B—C5B—C15B120.4 (5)C20B—C15B—C16B117.0 (6)
N1B—C5B—C15B120.4 (5)C20B—C15B—C5B121.1 (6)
C4B—C5B—C15B128.2 (6)C16B—C15B—C5B121.9 (6)
C13A—C6A—N2A120.4 (6)C15A—C16A—C17A121.4 (6)
C13A—C6A—C7A123.0 (6)C15A—C16A—H16A119.3
N2A—C6A—C7A116.6 (5)C17A—C16A—H16A119.3
C13B—C6B—N2B118.7 (6)C17B—C16B—C15B121.9 (6)
C13B—C6B—C7B126.1 (6)C17B—C16B—H16B119.1
N2B—C6B—C7B115.2 (5)C15B—C16B—H16B119.1
C8A—C7A—C12A118.8 (6)C18A—C17A—C16A118.4 (6)
C8A—C7A—C6A119.4 (6)C18A—C17A—H17A120.8
C12A—C7A—C6A121.7 (7)C16A—C17A—H17A120.8
C8B—C7B—C12B118.5 (6)C16B—C17B—C18B119.7 (6)
C8B—C7B—C6B121.5 (6)C16B—C17B—H17B120.1
C12B—C7B—C6B119.8 (6)C18B—C17B—H17B120.1
C7A—C8A—C9A119.7 (6)C17A—C18A—C19A121.8 (6)
C7A—C8A—H8A120.2C17A—C18A—Br2A119.7 (5)
C9A—C8A—H8A120.2C19A—C18A—Br2A118.5 (5)
C9B—C8B—C7B120.0 (6)C19B—C18B—C17B119.0 (6)
C9B—C8B—H8B120.0C19B—C18B—Br2B120.9 (5)
C7B—C8B—H8B120.0C17B—C18B—Br2B120.0 (5)
C10A—C9A—C8A121.3 (7)C18A—C19A—C20A119.4 (6)
C10A—C9A—H9A119.4C18A—C19A—H19A120.3
C8A—C9A—H9A119.4C20A—C19A—H19A120.3
C10B—C9B—C8B120.6 (6)C18B—C19B—C20B121.1 (6)
C10B—C9B—H9B119.7C18B—C19B—H19B119.4
C8B—C9B—H9B119.7C20B—C19B—H19B119.4
C9A—C10A—C11A119.8 (7)C19A—C20A—C15A120.4 (6)
C9A—C10A—Br1A119.3 (6)C19A—C20A—H20A119.8
C11A—C10A—Br1A120.8 (6)C15A—C20A—H20A119.8
C9B—C10B—C11B120.5 (6)C19B—C20B—C15B121.2 (6)
C9B—C10B—Br1B119.8 (5)C19B—C20B—H20B119.4
C11B—C10B—Br1B119.7 (5)C15B—C20B—H20B119.4
C5A—N1A—N2A—C3A−0.8 (6)C8B—C9B—C10B—Br1B177.8 (5)
C5A—N1A—N2A—C6A176.8 (5)C9A—C10A—C11A—C12A−0.5 (12)
C5B—N1B—N2B—C3B0.7 (6)Br1A—C10A—C11A—C12A176.3 (6)
C5B—N1B—N2B—C6B−176.9 (5)C9B—C10B—C11B—C12B0.7 (10)
N1A—N2A—C3A—C4A0.4 (7)Br1B—C10B—C11B—C12B−179.1 (6)
N1A—N2A—C3A—C4A0.4 (7)C10A—C11A—C12A—C7A−1.5 (12)
C6A—N2A—C3A—C4A−176.9 (6)C8A—C7A—C12A—C11A2.9 (11)
N1B—N2B—C3B—C4B−1.1 (6)C6A—C7A—C12A—C11A−174.8 (7)
N1B—N2B—C3B—C4B−1.1 (6)C10B—C11B—C12B—C7B0.3 (11)
C6B—N2B—C3B—C4B176.3 (6)C8B—C7B—C12B—C11B0.0 (11)
N2A—C3A—C4A—C5A0.2 (7)C6B—C7B—C12B—C11B176.8 (7)
N2B—C3B—C4B—C5B0.9 (7)N2A—C6A—C13A—C14A179.3 (6)
N2A—N1A—C5A—C4A0.9 (6)C7A—C6A—C13A—C14A−1.2 (10)
N2A—N1A—C5A—C15A178.9 (5)N2B—C6B—C13B—C14B−177.0 (5)
C3A—C4A—C5A—N1A−0.7 (7)C7B—C6B—C13B—C14B4.0 (10)
C3A—C4A—C5A—C15A−178.5 (6)C6A—C13A—C14A—O1A−177.9 (7)
N2B—N1B—C5B—C4B−0.1 (6)C6B—C13B—C14B—O1B179.4 (7)
N2B—N1B—C5B—C15B−179.4 (5)N1A—C5A—C15A—C16A−173.0 (5)
C3B—C4B—C5B—N1B−0.5 (7)C4A—C5A—C15A—C16A4.7 (9)
C3B—C4B—C5B—N1B−0.5 (7)N1A—C5A—C15A—C20A5.9 (8)
C3B—C4B—C5B—C15B178.7 (6)C4A—C5A—C15A—C20A−176.4 (6)
N1A—N2A—C6A—C13A−1.6 (8)N1B—C5B—C15B—C20B−3.8 (8)
C3A—N2A—C6A—C13A175.4 (6)C4B—C5B—C15B—C20B177.0 (6)
N1A—N2A—C6A—C7A178.9 (5)N1B—C5B—C15B—C16B174.8 (5)
C3A—N2A—C6A—C7A−4.1 (9)C4B—C5B—C15B—C16B−4.4 (9)
N1B—N2B—C6B—C13B7.6 (8)C20A—C15A—C16A—C17A0.0 (8)
C3B—N2B—C6B—C13B−169.6 (6)C5A—C15A—C16A—C17A178.9 (6)
N1B—N2B—C6B—C7B−173.3 (5)C20B—C15B—C16B—C17B1.5 (9)
C3B—N2B—C6B—C7B9.5 (8)C5B—C15B—C16B—C17B−177.1 (6)
C13A—C6A—C7A—C8A−75.2 (8)C15A—C16A—C17A—C18A−1.7 (9)
N2A—C6A—C7A—C8A104.3 (7)C15B—C16B—C17B—C18B−0.3 (10)
C13A—C6A—C7A—C12A102.4 (9)C16A—C17A—C18A—C19A2.4 (9)
N2A—C6A—C7A—C12A−78.1 (8)C16A—C17A—C18A—Br2A−177.3 (5)
C13B—C6B—C7B—C8B67.2 (9)C16B—C17B—C18B—C19B−1.1 (9)
N2B—C6B—C7B—C8B−111.8 (6)C16B—C17B—C18B—Br2B177.0 (5)
C13B—C6B—C7B—C12B−109.5 (8)C17A—C18A—C19A—C20A−1.3 (9)
N2B—C6B—C7B—C12B71.5 (8)Br2A—C18A—C19A—C20A178.4 (5)
C12A—C7A—C8A—C9A−2.4 (10)C17B—C18B—C19B—C20B1.1 (9)
C6A—C7A—C8A—C9A175.4 (6)Br2B—C18B—C19B—C20B−176.9 (5)
C12B—C7B—C8B—C9B−1.3 (10)C18A—C19A—C20A—C15A−0.5 (9)
C6B—C7B—C8B—C9B−178.0 (6)C16A—C15A—C20A—C19A1.1 (8)
C7A—C8A—C9A—C10A0.5 (11)C5A—C15A—C20A—C19A−177.8 (5)
C7B—C8B—C9B—C10B2.4 (10)C18B—C19B—C20B—C15B0.2 (9)
C8A—C9A—C10A—C11A1.0 (11)C16B—C15B—C20B—C19B−1.5 (8)
C8A—C9A—C10A—Br1A−175.8 (5)C5B—C15B—C20B—C19B177.2 (5)
C8B—C9B—C10B—C11B−2.0 (10)
Hydrogen-bond geometry (Å, °)
D—H···AD—HH···AD···AD—H···A
C13A—H13A···N1A0.932.432.779 (9)102
C13B—H13···N1B0.932.382.743 (8)103
C8B—H8B···O1Bi0.932.503.419 (8)172
Symmetry codes: (i) x−1/2, −y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5143).
  • Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Il Farmaco, 45, 147–66. [PubMed]
  • Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ.19, 572–576.
  • Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105–2108. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643. [PubMed]
  • Londershausen, M. (1996). Pestic. Sci.48, 269–274.
  • Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199–200.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol.432, 107–119. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography