PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o271–o272.
Published online 2010 January 9. doi:  10.1107/S1600536809055172
PMCID: PMC2979975

5-{[(E)-2-(4-Iodo­phen­yl)hydrazinyl­idene]meth­yl}thio­phene-2-carbaldehyde

Abstract

The title compound, C12H9IN2OS, has an overall U-shape, with a dihedral angle of 21.4 (3)° between the thio­phene and benzene rings. In the crystal, supra­molecular chains mediated by N—H(...)O hydrogen bonds are formed along the b-axis direction.

Related literature

For background to 2-substituted thio­phenes, see: Campaigne (1984 [triangle]); Kleemann et al. (2006 [triangle]). For the anti­mycobacterial activity of 2-substituted thio­phenes, see: Lourenço et al. (2007 [triangle]). For a related structure, see: Ferreira et al. (2009 [triangle]). For background to the production of mono-hydrazones by the reaction of aryl­hydrazines with arenedicarbaldehydes, see: Reuch & Heflet (1956 [triangle]); Vaysse & Pastour (1964 [triangle]); Butler et al. (1990 [triangle]); Glidewell et al. (2005 [triangle]); Low et al. (2006 [triangle]); Wardell et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o271-scheme1.jpg

Experimental

Crystal data

  • C12H9IN2OS
  • M r = 356.17
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o271-efi1.jpg
  • a = 6.9291 (9) Å
  • b = 11.7602 (10) Å
  • c = 30.958 (4) Å
  • V = 2522.7 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 2.69 mm−1
  • T = 120 K
  • 0.16 × 0.08 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.616, T max = 0.746
  • 15735 measured reflections
  • 2614 independent reflections
  • 1674 reflections with I > 2σ(I)
  • R int = 0.095

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.113
  • S = 1.04
  • 2614 reflections
  • 157 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.08 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809055172/hb5284sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055172/hb5284Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

supplementary crystallographic information

Comment

The various uses of 2-substituted thiophenes have been well documented (Campaigne, 1984; Kleemann et al., 2006). Amongst these appplications, are antimycobacterial activities, as found for a series of N-(aryl)-2-thiophen-2-ylacetamide derivatives (Lourenço et al., 2007), one structure of which, i.e. N-(2,6-dimethylphenyl)-2-(thiophen-2-yl)acetamide, was recently reported (Ferreira et al., 2009). Herein, we now report the structure of the title compound (I) prepared by the controlled reaction of p-iodophenylhydrazine with 2,5-thiophenedicarbaldehyde. As indicated in the literature, controlled reactions of arylhydrazines with arenedicarbaldehydes can successfully produce mono-hydrazones (Reuch & Heflet, 1956; Vaysse & Pastour, 1964; Butler et al., 1990; Glidewell, et al., 2005; Low et al., 2006; Wardell et al., 2006).

The overall molecule of (I), Fig. 1, is non-planar as evidenced by the dihedral angle of 21.4 (3)° formed between the thiophene and benzene rings. The twist in the molecule is most evident in the C4–N1–N2–C7 torsion angle of -172.2 (6) ° and. more particularly, in the adjacent N2–N1–C4–C3 torsion angle of -20.8 (9) °. The conformation about the C7═N2 bond [1.284 (8) Å] is E. The thiophene-S and aldehyde-O atoms are syn and are directed towards the benzene ring so that, overall, the molecule has a U-shape. The most prominent intermolecular interactions operating in the crystal structure are N–H···O hydrogen bonds, Table 1. These lead to supramolecular chains along the b direction, Fig. 2. Chains are connected along the c direction by I···I contacts [I···Ii = 3.7630 (8) Å for i: -x, 1 - y, 1 - z] to form a 2-D array. Layers thus formed stack along the a direction, Fig. 3.

Experimental

A solution of p-iodophenylhydrazine (117 mg, 0.5 mmol) in MeOH (10 ml) was slowly added to a solution of 2,5-thiophenedicarbaldehyde (70 mg, 0.5 mmol) in MeOH (5 ml) at room temperature. The reaction mixture was maintained at room temperature and the crystals, which slowly formed, were collected and recrystallized from MeOH, m.pt. 464–467 K (dec.). IR(KBr, cm-1): 1675 (C═O), 1593(C═N).

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N–H atom was located in a difference map and refined with the distance restraint N–H = 0.88±0.01 and with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
Fig. 2.
A view of the supramolecular 2-D array in (I) mediated by N–H···O hydrogen bonding (orange dashed lines) leading to chains in the b direction held together in the c direction by I···I contacts (not ...
Fig. 3.
A view of the stacking of layers (illustrated in Fig. 2) along the a direction in (I). Colour code: I, pink; S, yellow; O, red; N, blue; C, grey; and H, green.

Crystal data

C12H9IN2OSF(000) = 1376
Mr = 356.17Dx = 1.876 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 16555 reflections
a = 6.9291 (9) Åθ = 2.9–27.5°
b = 11.7602 (10) ŵ = 2.69 mm1
c = 30.958 (4) ÅT = 120 K
V = 2522.7 (5) Å3Prism, colourless
Z = 80.16 × 0.08 × 0.05 mm

Data collection

Nonius KappaCCD diffractometer2614 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode1674 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.095
Detector resolution: 9.091 pixels mm-1θmax = 26.5°, θmin = 3.2°
[var phi] and ω scansh = −8→8
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −14→14
Tmin = 0.616, Tmax = 0.746l = −38→37
15735 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0257P)2 + 17.1487P] where P = (Fo2 + 2Fc2)/3
2614 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 1.08 e Å3
1 restraintΔρmin = −0.60 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I1−0.01127 (8)0.34335 (4)0.487908 (18)0.04277 (19)
S10.1013 (3)0.10271 (14)0.21597 (6)0.0261 (4)
N10.0936 (8)−0.0324 (5)0.3466 (2)0.0282 (14)
H1N0.039 (9)−0.099 (3)0.350 (2)0.034*
N20.1043 (8)0.0033 (5)0.3048 (2)0.0266 (13)
O10.1012 (7)0.2541 (4)0.13359 (16)0.0336 (12)
C10.0410 (10)0.2143 (6)0.4423 (2)0.0323 (18)
C20.1194 (10)0.2425 (6)0.4030 (2)0.0322 (18)
H20.16100.31820.39760.039*
C30.1374 (9)0.1609 (6)0.3714 (2)0.0278 (16)
H30.19000.18080.34410.033*
C40.0794 (9)0.0499 (6)0.3792 (2)0.0231 (15)
C50.0110 (10)0.0198 (5)0.4197 (2)0.0284 (16)
H5−0.0202−0.05730.42570.034*
C6−0.0121 (10)0.1017 (6)0.4514 (2)0.0332 (17)
H6−0.06310.08200.47890.040*
C70.0949 (10)−0.0729 (6)0.2752 (2)0.0275 (17)
H70.0837−0.15090.28270.033*
C80.1016 (9)−0.0394 (5)0.2306 (2)0.0249 (16)
C90.1085 (9)0.0672 (6)0.1616 (2)0.0239 (15)
C100.1118 (10)−0.0491 (6)0.1562 (2)0.0291 (17)
H100.1177−0.08490.12880.035*
C110.1057 (10)−0.1090 (6)0.1951 (2)0.0292 (16)
H110.1046−0.18970.19680.035*
C120.1088 (9)0.1509 (6)0.1282 (2)0.0288 (16)
H120.11560.12430.09930.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.0425 (3)0.0365 (3)0.0493 (3)−0.0005 (3)0.0024 (3)−0.0128 (3)
S10.0228 (9)0.0219 (8)0.0336 (10)−0.0006 (8)0.0004 (8)−0.0049 (8)
N10.023 (3)0.020 (3)0.042 (4)−0.002 (3)0.004 (3)0.001 (3)
N20.020 (3)0.030 (3)0.030 (4)0.001 (3)0.005 (3)0.003 (3)
O10.027 (3)0.025 (3)0.049 (3)−0.003 (2)−0.004 (3)−0.001 (2)
C10.029 (4)0.033 (4)0.035 (4)0.001 (3)−0.007 (3)−0.003 (3)
C20.025 (4)0.027 (4)0.045 (5)−0.005 (3)−0.005 (4)−0.002 (3)
C30.018 (3)0.026 (4)0.039 (4)−0.002 (3)−0.002 (3)−0.001 (3)
C40.018 (3)0.024 (4)0.027 (4)0.001 (3)−0.002 (3)−0.001 (3)
C50.027 (4)0.020 (3)0.038 (4)0.001 (3)−0.003 (4)0.003 (3)
C60.034 (4)0.032 (4)0.034 (4)0.002 (4)0.001 (4)−0.001 (3)
C70.021 (4)0.022 (4)0.040 (5)0.000 (3)0.000 (4)0.001 (3)
C80.017 (3)0.018 (3)0.039 (4)−0.002 (3)0.001 (3)−0.005 (3)
C90.012 (3)0.031 (4)0.029 (4)0.002 (3)0.001 (3)−0.006 (3)
C100.023 (4)0.025 (4)0.039 (5)0.001 (3)−0.002 (3)−0.011 (3)
C110.026 (4)0.018 (3)0.044 (5)0.000 (3)0.010 (4)−0.006 (3)
C120.020 (3)0.027 (4)0.040 (5)0.005 (4)−0.002 (3)−0.007 (3)

Geometric parameters (Å, °)

I1—C12.103 (7)C4—C51.387 (9)
S1—C81.732 (7)C5—C61.386 (9)
S1—C91.734 (7)C5—H50.9500
N1—N21.362 (8)C6—H60.9500
N1—C41.402 (8)C7—C81.436 (9)
N1—H1N0.876 (10)C7—H70.9500
N2—C71.284 (8)C8—C111.371 (9)
O1—C121.227 (8)C9—C101.378 (9)
C1—C21.374 (10)C9—C121.429 (9)
C1—C61.403 (10)C10—C111.395 (10)
C2—C31.376 (9)C10—H100.9500
C2—H20.9500C11—H110.9500
C3—C41.388 (9)C12—H120.9500
C3—H30.9500
C8—S1—C991.2 (3)C5—C6—H6120.5
N2—N1—C4118.3 (6)C1—C6—H6120.5
N2—N1—H1N114 (5)N2—C7—C8119.6 (6)
C4—N1—H1N120 (5)N2—C7—H7120.2
C7—N2—N1117.4 (6)C8—C7—H7120.2
C2—C1—C6120.6 (7)C11—C8—C7127.4 (6)
C2—C1—I1119.2 (5)C11—C8—S1111.5 (5)
C6—C1—I1120.1 (5)C7—C8—S1121.1 (5)
C1—C2—C3119.8 (7)C10—C9—C12126.6 (6)
C1—C2—H2120.1C10—C9—S1110.9 (5)
C3—C2—H2120.1C12—C9—S1122.5 (5)
C2—C3—C4120.5 (7)C9—C10—C11113.3 (6)
C2—C3—H3119.8C9—C10—H10123.3
C4—C3—H3119.8C11—C10—H10123.3
C3—C4—C5119.7 (6)C8—C11—C10113.0 (6)
C3—C4—N1120.4 (6)C8—C11—H11123.5
C5—C4—N1119.9 (6)C10—C11—H11123.5
C6—C5—C4120.2 (6)O1—C12—C9125.7 (7)
C6—C5—H5119.9O1—C12—H12117.2
C4—C5—H5119.9C9—C12—H12117.2
C5—C6—C1118.9 (7)
C4—N1—N2—C7−172.2 (6)N2—C7—C8—C11175.5 (7)
C6—C1—C2—C33.2 (11)N2—C7—C8—S1−5.6 (9)
I1—C1—C2—C3−173.9 (5)C9—S1—C8—C11−0.4 (5)
C1—C2—C3—C4−0.9 (10)C9—S1—C8—C7−179.4 (6)
C2—C3—C4—C5−3.0 (10)C8—S1—C9—C10−0.3 (5)
C2—C3—C4—N1178.4 (6)C8—S1—C9—C12179.2 (6)
N2—N1—C4—C3−20.8 (9)C12—C9—C10—C11−178.5 (6)
N2—N1—C4—C5160.6 (6)S1—C9—C10—C110.9 (8)
C3—C4—C5—C64.5 (10)C7—C8—C11—C10180.0 (7)
N1—C4—C5—C6−176.9 (6)S1—C8—C11—C101.0 (8)
C4—C5—C6—C1−2.1 (11)C9—C10—C11—C8−1.2 (9)
C2—C1—C6—C5−1.7 (11)C10—C9—C12—O1178.2 (7)
I1—C1—C6—C5175.4 (5)S1—C9—C12—O1−1.2 (10)
N1—N2—C7—C8178.7 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.88 (4)2.05 (5)2.916 (8)172 (5)

Symmetry codes: (i) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5284).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Butler, R. N., Gillan, A. M., Lysaght, F. A., McArdle, P. & Cunningham, D. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 555–561.
  • Campaigne, E. (1984). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky & C. W. Rees, pp. 863–934. Oxford: Pergamon.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ferreira de Lima, M., de Souza, M. V. N., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3203. [PMC free article] [PubMed]
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o493–o495. [PubMed]
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Kleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). Pharmaceutical Substances New York, Stuttgart: Georg Thieme Verlag.
  • Lourenço, M. C. S., Vicente, F. R., Henriques, M., das, G. M. de O., Candéa, A. L. P., Gonçalves, R. S. B., Nogueira, T. C. M., Ferreira, M. de L. & de Souza, M. V. N. (2007). Bioorg. Med. Chem. Lett.17, 6895–6898. [PubMed]
  • Low, J. N., Wardell, J. L. & Glidewell, C. (2006). Acta Cryst. E62, o1816–o1818.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Reuch, H. & Heflet, L. (1956). J. Org. Chem.21, 708.
  • Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vaysse, M. & Pastour, P. (1964). Compt. Rend.259, 2657–2659.
  • Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, o2204–o2206.
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography