PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m241.
Published online 2010 January 30. doi:  10.1107/S1600536810001297
PMCID: PMC2979973

trans-Bis(1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionato-κ2 O,O′)bis­(4-methyl-1,2,3-selenadiazole-κN 3)copper(II)

Abstract

In the title compound, [Cu(C5HF6O2)2(C3H4N2Se)2], the CuII atom (site symmetry An external file that holds a picture, illustration, etc.
Object name is e-66-0m241-efi1.jpg) is coordinated by two O,O′-bidentate 1,1,1,5,5,5-hexa­fluoro-2,4-penta­nedione (hp) ligands and two 4-methyl-1,2,3-selenadiazole mol­ecules, resulting in a slightly distorted trans-CuN2O4 octa­hedral geometry in which the cis angles deviate by less than 3° from 90°. The selenadiazole plane is canted at 73.13 (17)° to the square plane defined by the penta­nedionate O atoms. The F atoms of one of the hp ligands are disordered over two sets of sites in a 0.66 (3):0.34 (3) ratio. There are no significant inter­molecular inter­actions in the crystal.

Related literature

Similar stuctures are exhibited by bis­(hexa­fluoro­penta­dionato) copper complexes of imidazole (Colacio et al., 2000 [triangle]), pyrazole (Kogane et al., 1990 [triangle]; Fokin et al., 2002 [triangle]) and substituted pyridines (De Panthou et al., 1996 [triangle]; Iwahori et al., 2001 [triangle]; Sano et al., 1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m241-scheme1.jpg

Experimental

Crystal data

  • [Cu(C5HF6O2)2(C3H4N2Se)2]
  • M r = 771.74
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m241-efi2.jpg
  • a = 8.191 (2) Å
  • b = 14.390 (4) Å
  • c = 11.429 (4) Å
  • β = 104.86 (3)°
  • V = 1302.1 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.75 mm−1
  • T = 293 K
  • 0.25 × 0.25 × 0.25 mm

Data collection

  • Nicolet R3m/V diffractometer
  • Absorption correction: ψ scan (SHELXTL; Sheldrick, 2008 [triangle]) T min = 0.755, T max = 0.793
  • 3218 measured reflections
  • 3014 independent reflections
  • 1894 reflections with I > 2σ(I)
  • R int = 0.048
  • 3 standard reflections every 97 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.126
  • S = 1.03
  • 3014 reflections
  • 215 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001297/hb5239sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001297/hb5239Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We wish to thank Dr D. Shah, Imperial College, for experimental assistance.

supplementary crystallographic information

Comment

The title molecule, [Cu(C3HF6O2)2(C3H4N2Se)2], (I) was prepared as a potential precursor to CuInSe2. The molecule (Fig. 1) is centrosymmetric resulting in pairs of equivalent ligands lying trans to each other in a slightly distorted octahedral coordination geometry in which the cis angles deviate less than 3° from right angles. The Cu is bound to N1 of the selenadiazole whose plane is canted at 73.13 (0.17) ° to the square plane defined by the pentanedionato oxygen atoms. The Cu—N bond is elongated. There are no intermolecular interactions.

Experimental

A solution of 4-methyl-1,2,3-selenadiazole (4.65 g, 0.032 mol) in dichloromethane was added dropwise to a solution of Cu(hfac)2.xH2O (7.84 g, 0.016 mol) in dichloromethane/toluene (50 ml) at 273 K in the absence of light. The mixture was stirred for 12 h, the solvent removed in vacuo and the residue dissolved in warm toluene. Slow cooling afforded olive-green parallelepipeds of (I). Yield 8.13 g (65%), mpt. 354–356 K. Found: C, 24.86; H, 1.24; N, 7.31%. Calc.for C16H12CuF12N4O4Se2: C, 24.90; H, 1.31; N, 7.26%. µ 2.15 BM.

Refinement

All H atoms were placed in calculated positions and refined using a riding model. All other hydrogen atoms were located and fully refined.

Figures

Fig. 1.
The molecular structure of (I), with 50% probability displacement ellipsoids. Hydrogen atoms and the fluorine atoms have been excluded for clarity.

Crystal data

[Cu(C5HF6O2)2(C3H4N2Se)2]Dx = 1.968 Mg m3
Mr = 771.74Melting point: 355 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.191 (2) ÅCell parameters from 20 reflections
b = 14.390 (4) Åθ = 7.9–14.5°
c = 11.429 (4) ŵ = 3.75 mm1
β = 104.86 (3)°T = 293 K
V = 1302.1 (7) Å3Parallelpiped, green
Z = 20.25 × 0.25 × 0.25 mm
F(000) = 742

Data collection

Nicolet R3m/V diffractometerRint = 0.048
graphiteθmax = 27.6°, θmin = 2.3°
profile data from θ/2θ scansh = −2→10
Absorption correction: ψ scan (SHELXTL; Sheldrick, 2008)k = −6→18
Tmin = 0.755, Tmax = 0.793l = −14→14
3218 measured reflections3 standard reflections every 97 reflections
3014 independent reflections intensity decay: none
1894 reflections with I > 2σ(I)

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0459P)2 + 1.964P] where P = (Fo2 + 2Fc2)/3
3014 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu0.00000.00000.50000.0467 (2)
Se0.11516 (8)0.14840 (4)0.26686 (5)0.0667 (2)
N10.0700 (6)0.1433 (3)0.4188 (4)0.0564 (11)
N20.0391 (6)0.2234 (3)0.4541 (4)0.0572 (11)
C60.0853 (8)0.2732 (4)0.2739 (5)0.0628 (15)
C70.0470 (7)0.2966 (4)0.3777 (5)0.0577 (13)
C710.0087 (11)0.3911 (4)0.4164 (6)0.093 (2)
H71A−0.01430.43220.34790.140*
H71B0.10400.41390.47720.140*
H71C−0.08810.38820.44890.140*
O1−0.1707 (5)−0.0178 (2)0.3457 (3)0.0546 (9)
O2−0.1614 (5)0.0692 (2)0.5702 (3)0.0520 (8)
C1−0.3071 (7)0.0274 (4)0.3148 (5)0.0582 (14)
C11−0.4037 (9)0.0109 (5)0.1836 (6)0.0771 (19)
F11−0.5552 (6)0.0472 (5)0.1545 (4)0.157 (3)
F12−0.3218 (6)0.0490 (3)0.1084 (3)0.1142 (15)
F13−0.4170 (6)−0.0780 (3)0.1545 (4)0.1076 (14)
C2−0.3728 (8)0.0879 (4)0.3859 (5)0.0674 (16)
C3−0.2960 (7)0.1034 (4)0.5075 (5)0.0541 (13)
C31−0.3885 (10)0.1722 (5)0.5750 (7)0.0782 (19)
F311−0.318 (2)0.2515 (8)0.581 (3)0.145 (9)0.66 (3)
F312−0.5418 (12)0.1700 (18)0.5425 (19)0.161 (10)0.66 (3)
F313−0.349 (2)0.1452 (18)0.6957 (10)0.137 (6)0.66 (3)
F321−0.300 (2)0.210 (2)0.663 (3)0.105 (10)0.34 (3)
F322−0.520 (6)0.141 (2)0.591 (5)0.18 (2)0.34 (3)
F323−0.457 (6)0.2452 (19)0.4941 (19)0.138 (14)0.34 (3)
H2−0.475 (7)0.118 (4)0.347 (5)0.065 (17)*
H60.085 (9)0.314 (5)0.207 (7)0.12 (3)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0603 (5)0.0401 (4)0.0375 (4)0.0048 (4)0.0085 (4)−0.0043 (4)
Se0.0834 (5)0.0652 (4)0.0568 (4)0.0044 (3)0.0276 (3)−0.0066 (3)
N10.072 (3)0.051 (3)0.051 (2)0.001 (2)0.023 (2)0.004 (2)
N20.081 (3)0.047 (3)0.047 (2)0.002 (2)0.023 (2)0.005 (2)
C60.080 (4)0.063 (4)0.049 (3)−0.001 (3)0.022 (3)0.012 (3)
C70.080 (4)0.047 (3)0.046 (3)0.002 (3)0.014 (3)0.009 (2)
C710.152 (7)0.059 (4)0.076 (4)0.002 (4)0.044 (5)0.001 (3)
O10.065 (2)0.051 (2)0.0436 (18)0.0042 (18)0.0060 (17)−0.0060 (16)
O20.064 (2)0.047 (2)0.0444 (18)0.0014 (17)0.0132 (17)−0.0044 (15)
C10.067 (4)0.058 (3)0.045 (3)0.003 (3)0.007 (3)−0.002 (2)
C110.077 (4)0.092 (5)0.052 (4)0.012 (4)−0.003 (3)−0.016 (3)
F110.098 (3)0.260 (7)0.081 (3)0.080 (4)−0.033 (2)−0.062 (4)
F120.149 (4)0.133 (4)0.052 (2)−0.001 (3)0.011 (2)0.013 (2)
F130.130 (4)0.102 (3)0.072 (2)−0.014 (3)−0.008 (2)−0.024 (2)
C20.061 (4)0.074 (4)0.060 (3)0.013 (3)0.003 (3)−0.014 (3)
C30.056 (3)0.048 (3)0.061 (3)−0.001 (3)0.019 (3)−0.010 (3)
C310.081 (5)0.070 (5)0.089 (5)−0.002 (4)0.032 (4)−0.030 (4)
F3110.164 (16)0.064 (6)0.23 (2)0.004 (7)0.095 (18)−0.043 (9)
F3120.045 (6)0.27 (2)0.158 (13)0.041 (8)−0.001 (6)−0.123 (14)
F3130.147 (12)0.188 (15)0.088 (6)0.053 (10)0.052 (7)−0.030 (8)
F3210.067 (11)0.12 (2)0.104 (17)0.027 (14)−0.015 (11)−0.071 (14)
F3220.23 (4)0.132 (17)0.27 (5)−0.10 (2)0.22 (4)−0.10 (2)
F3230.21 (3)0.101 (14)0.094 (12)0.105 (18)0.034 (16)0.019 (10)

Geometric parameters (Å, °)

Cu—O11.967 (3)C1—C21.390 (8)
Cu—O21.981 (3)C1—C111.524 (8)
Cu—N12.391 (4)C11—F111.308 (7)
Se—C61.817 (6)C11—F131.318 (8)
Se—N11.867 (4)C11—F121.336 (8)
N1—N21.268 (6)C2—C31.389 (8)
N2—C71.380 (6)C2—H20.95 (6)
C6—C71.345 (7)C3—C311.565 (8)
C6—H60.97 (8)C31—F3121.214 (12)
C7—C711.488 (8)C31—F3111.273 (12)
C71—H71A0.96C31—F3131.389 (15)
C71—H71B0.96C31—F3211.204 (17)
C71—H71C0.96C31—F3221.23 (2)
O1—C11.262 (6)C31—F3231.418 (17)
O2—C31.252 (6)
O1—Cu—O2i88.06 (14)O1—C1—C11113.2 (5)
O1—Cu—O291.94 (14)C2—C1—C11119.5 (5)
O1—Cu—N187.15 (15)F11—C11—F13108.2 (6)
O1i—Cu—N192.85 (15)F11—C11—F12105.9 (6)
O2i—Cu—N191.44 (15)F13—C11—F12105.0 (6)
O2—Cu—N188.57 (15)F11—C11—C1114.0 (5)
C6—Se—N186.4 (2)F13—C11—C1112.8 (6)
N2—N1—Se111.3 (3)F12—C11—C1110.4 (6)
N2—N1—Cu125.0 (3)C3—C2—C1122.8 (6)
Se—N1—Cu121.3 (2)C3—C2—H2121 (3)
N1—N2—C7116.6 (4)C1—C2—H2116 (3)
C7—C6—Se110.6 (4)O2—C3—C2128.1 (5)
C7—C6—H6126 (4)O2—C3—C31115.7 (5)
Se—C6—H6123 (4)C2—C3—C31116.3 (6)
C6—C7—N2115.2 (5)F312—C31—F311117.2 (13)
C6—C7—C71127.2 (5)F312—C31—F313104.9 (12)
N2—C7—C71117.5 (5)F311—C31—F313102.0 (11)
C7—C71—H71A109.5F312—C31—C3115.2 (8)
C7—C71—H71B109.5F311—C31—C3109.0 (8)
H71A—C71—H71B109.5F313—C31—C3107.1 (8)
C7—C71—H71C109.5F321—C31—F322114 (2)
H71A—C71—H71C109.5F321—C31—F323105.4 (16)
H71B—C71—H71C109.5F322—C31—F32399 (2)
C1—O1—Cu123.9 (3)F321—C31—C3115.3 (10)
C3—O2—Cu123.2 (3)F322—C31—C3113.4 (14)
O1—C1—C2127.4 (5)F323—C31—C3107.9 (9)
C6—Se—N1—N20.8 (4)Cu—O1—C1—C11171.1 (4)
C6—Se—N1—Cu164.0 (3)O1—C1—C11—F11171.4 (6)
O1—Cu—N1—N2109.9 (4)C2—C1—C11—F11−8.8 (10)
O1i—Cu—N1—N2−70.1 (4)O1—C1—C11—F1347.5 (8)
O2i—Cu—N1—N2−162.1 (4)C2—C1—C11—F13−132.7 (6)
O2—Cu—N1—N217.9 (4)O1—C1—C11—F12−69.6 (7)
O1—Cu—N1—Se−50.9 (3)C2—C1—C11—F12110.2 (7)
O1i—Cu—N1—Se129.1 (3)O1—C1—C2—C3−3.2 (11)
O2i—Cu—N1—Se37.1 (3)C11—C1—C2—C3177.1 (6)
O2—Cu—N1—Se−142.9 (3)Cu—O2—C3—C211.9 (8)
Se—N1—N2—C7−1.0 (6)Cu—O2—C3—C31−168.1 (4)
Cu—N1—N2—C7−163.4 (4)C1—C2—C3—O21.3 (10)
N1—Se—C6—C7−0.5 (5)C1—C2—C3—C31−178.8 (6)
Se—C6—C7—N20.1 (7)O2—C3—C31—F312−145.3 (18)
Se—C6—C7—C71−178.2 (6)C2—C3—C31—F31234.8 (19)
N1—N2—C7—C60.6 (8)O2—C3—C31—F31180.6 (17)
N1—N2—C7—C71179.1 (6)C2—C3—C31—F311−99.4 (16)
O2i—Cu—O1—C1−164.5 (4)O2—C3—C31—F313−29.0 (14)
O2—Cu—O1—C115.5 (4)C2—C3—C31—F313151.0 (13)
N1i—Cu—O1—C1107.0 (4)O2—C3—C31—F32124 (3)
N1—Cu—O1—C1−73.0 (4)C2—C3—C31—F321−156 (3)
O1—Cu—O2—C3−16.9 (4)O2—C3—C31—F322−110 (3)
O1i—Cu—O2—C3163.1 (4)C2—C3—C31—F32271 (3)
N1i—Cu—O2—C3−109.8 (4)O2—C3—C31—F323142 (2)
N1—Cu—O2—C370.2 (4)C2—C3—C31—F323−38 (3)
Cu—O1—C1—C2−8.6 (8)

Symmetry codes: (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5239).

References

  • Colacio, E., Ghazi, M., Kivekas, R., Klinga, M., Lloret, F. & Moreno, J. M. (2000). Inorg. Chem 39, 2770–2776. [PubMed]
  • De Panthou, F. L., Luneau, D., Musin, R., Ohrstrom, L., Grand, A., Turek, P. & Rey, P. (1996). Inorg. Chem 35, 3484–3491.
  • Fokin, S. V., Romanenko, G. V., Shvedenkov, Yu. G., Ikorskii, V. N., Vasilevsky, S. F., Tret’yakov, E. V. & Ovcharenko, V. I. (2002). J. Struct. Chem 43, 828–834.
  • Iwahori, F., Golhen, S., Ouahab, L., Carlier, R. & Sutter, J.-P. (2001). Inorg. Chem.400, 6541–6542. [PubMed]
  • Kogane, T., Ishii, M., Harada, K., Hirota, R. & Nakahara, M. (1990). Bull. Chem. Soc. Jpn, 63, 1005–1009.
  • Sano, Y., Tanaka, M., Koga, N., Matsuda, K., Iwamura, H., Rabu, P. & Drillon, M. (1997). J. Am. Chem. Soc 119, 8246–8252.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography