PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m195.
Published online 2010 January 23. doi:  10.1107/S1600536810002357
PMCID: PMC2979965

{2-[2-(Ethyl­amino)ethyl­imino­meth­yl]-5-methoxy­phenolato}thio­cyanato­nickel(II)

Abstract

In the title mononuclear nickel(II) complex, [Ni(C12H17N2O2)(NCS)], the metal atom is four-coordinated in a tetra­hedrally distorted square-planar geometry by the phenolate O atom, the imine N atom and the amine N atom of the Schiff base ligand and by the N atom of a thio­cyanate ligand. In the crystal structure, centrosymmetrically related mol­ecules are linked into dimers through inter­molecular N—H(...)O hydrogen bonds. These dimers are further connected by inter­molecular C—H(...)S hydrogen bonds, forming chains running parallel to [101].

Related literature

For general background to nickel(II) complexes with Schiff bases, see: Campbell & Urbach (1973 [triangle]); Wallis & Cummings (1974 [triangle]); Polt et al. (2003 [triangle]); Mukhopadhyay et al. (2003 [triangle]). For the structures of related complexes, see: Montazerozohori et al. (2009 [triangle]); Zhu et al. (2004 [triangle], 2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m195-scheme1.jpg

Experimental

Crystal data

  • [Ni(C12H17N2O2)(NCS)]
  • M r = 338.07
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m195-efi1.jpg
  • a = 9.298 (7) Å
  • b = 19.679 (14) Å
  • c = 8.461 (7) Å
  • β = 111.716 (11)°
  • V = 1438.3 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.50 mm−1
  • T = 298 K
  • 0.23 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.725, T max = 0.754
  • 6520 measured reflections
  • 2500 independent reflections
  • 1564 reflections with I > 2σ(I)
  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.127
  • S = 1.08
  • 2500 reflections
  • 186 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810002357/rz2410sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002357/rz2410Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Yichun University.

supplementary crystallographic information

Comment

Nickel(II) complexes with Schiff bases have been extensively studied (Campbell & Urbach, 1973; Wallis & Cummings, 1974; Polt et al., 2003; Mukhopadhyay et al., 2003). In the title compound, the Ni atom is four-coordinate by the phenolate O atom, imine N atom, and amine N atom of the Schiff base ligand, and by the N atom of a thiocyanate ligand, forming a tetrahedrally distorted square-planar geometry (Fig. 1). Bond lengths and angles involving the metal atom are comparable with those observed in similar complexes (Montazerozohori et al., 2009; Zhu et al., 2004; Zhu et al., 2006). The Ni1/N1/O1/C1/C2/C7 six-membered chelate ring is approximately planar (maximum deviation 0.063 (4) Å for atom N1, the Ni1/N1/N2/C8/C8 five-membered chelate ring assumes an envelope conformation, with atom C9 displaced by 0.589 (6) Å from the mean plane of the other atoms. In the crystal structure, centrosymmetrically related complex molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming a dimer (Fig. 2). The dimers are further connected by C—H···S hydrogen bonds, forming chains running parallel to [101].

Experimental

Equimolar quantities (0.1 mmol each) of N-ethylethane-1,2-diamine, ammonium thiocyanate, and Ni(CH3COO)2.4H2O were mixed and stirred in a methanol solution for 30 min at reflux. After keeping the filtrate in air for a few days, red block crystals were formed on slow evaporation of the solvent.

Refinement

Atom H2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title complex, with 30% displacement ellipsoids.
Fig. 2.
Partial crystal packing of the title compound showing the formation of a dimer through N—H···O hydrogen bonds. Hydrogen atoms not involved in hydrogen interactions are omitted for clarity.

Crystal data

[Ni(C12H17N2O2)(NCS)]F(000) = 704
Mr = 338.07Dx = 1.561 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1958 reflections
a = 9.298 (7) Åθ = 2.4–24.5°
b = 19.679 (14) ŵ = 1.50 mm1
c = 8.461 (7) ÅT = 298 K
β = 111.716 (11)°Block, red
V = 1438.3 (19) Å30.23 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2500 independent reflections
Radiation source: fine-focus sealed tube1564 reflections with I > 2σ(I)
graphiteRint = 0.071
ω scanθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008)h = −10→11
Tmin = 0.725, Tmax = 0.754k = −23→16
6520 measured reflectionsl = −9→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0494P)2 + 0.2075P] where P = (Fo2 + 2Fc2)/3
2500 reflections(Δ/σ)max = 0.001
186 parametersΔρmax = 0.40 e Å3
1 restraintΔρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.66858 (7)0.96690 (3)0.04177 (8)0.0404 (2)
N10.8603 (5)0.9561 (2)0.2264 (5)0.0469 (11)
N20.5948 (5)0.8919 (2)0.1568 (6)0.0493 (11)
N30.4937 (5)0.9566 (2)−0.1713 (6)0.0522 (12)
O10.7312 (4)1.04775 (15)−0.0367 (4)0.0453 (9)
O21.0527 (5)1.2299 (2)−0.0529 (5)0.0685 (12)
S10.3559 (2)0.90996 (10)−0.4968 (2)0.1057 (8)
C10.9916 (6)1.0501 (2)0.1607 (6)0.0430 (13)
C20.8670 (6)1.0760 (3)0.0252 (6)0.0401 (12)
C30.8866 (6)1.1367 (2)−0.0506 (6)0.0459 (13)
H30.80421.1550−0.14060.055*
C41.0268 (7)1.1694 (3)0.0070 (7)0.0501 (14)
C51.1530 (7)1.1415 (3)0.1362 (7)0.0557 (15)
H51.24891.16290.17170.067*
C61.1350 (6)1.0835 (3)0.2092 (7)0.0516 (14)
H61.22021.06460.29470.062*
C70.9819 (7)0.9921 (3)0.2524 (6)0.0475 (13)
H71.07190.97840.34020.057*
C80.8622 (6)0.8990 (2)0.3367 (6)0.0534 (15)
H8A0.93470.90740.45150.064*
H8B0.89290.85770.29490.064*
C90.7018 (6)0.8923 (3)0.3346 (7)0.0562 (15)
H9A0.69190.85040.39030.067*
H9B0.67840.93000.39470.067*
C100.5750 (7)0.8253 (3)0.0735 (8)0.0659 (17)
H10A0.67600.80840.08350.079*
H10B0.51440.8312−0.04670.079*
C110.4994 (8)0.7737 (3)0.1418 (11)0.112 (3)
H11A0.56220.76480.25860.168*
H11B0.48690.73260.07700.168*
H11C0.39980.79000.13420.168*
C120.9247 (8)1.2632 (3)−0.1721 (8)0.080 (2)
H12A0.88351.2361−0.27330.120*
H12B0.95661.3065−0.19990.120*
H12C0.84661.2698−0.12470.120*
C130.4377 (6)0.9358 (3)−0.3067 (8)0.0506 (14)
H20.507 (4)0.908 (3)0.164 (7)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0370 (4)0.0427 (4)0.0389 (4)−0.0023 (3)0.0108 (3)0.0030 (3)
N10.046 (3)0.051 (3)0.046 (3)0.007 (2)0.021 (2)0.009 (2)
N20.045 (3)0.049 (3)0.052 (3)0.002 (2)0.016 (2)0.001 (2)
N30.046 (3)0.061 (3)0.048 (3)−0.009 (2)0.017 (2)0.004 (2)
O10.038 (2)0.049 (2)0.045 (2)0.0006 (17)0.0100 (17)0.0081 (15)
O20.066 (3)0.070 (3)0.077 (3)−0.021 (2)0.036 (3)0.003 (2)
S10.1060 (17)0.1090 (16)0.0647 (12)0.0371 (12)−0.0118 (11)−0.0307 (10)
C10.047 (4)0.047 (3)0.037 (3)0.005 (3)0.018 (3)−0.004 (2)
C20.033 (3)0.052 (3)0.039 (3)−0.002 (3)0.018 (3)−0.007 (2)
C30.045 (3)0.050 (3)0.049 (3)0.002 (3)0.024 (3)0.004 (2)
C40.058 (4)0.054 (3)0.051 (4)−0.005 (3)0.036 (3)−0.001 (3)
C50.043 (4)0.077 (4)0.056 (4)−0.015 (3)0.028 (3)−0.008 (3)
C60.037 (3)0.071 (4)0.050 (3)0.001 (3)0.019 (3)−0.006 (3)
C70.040 (3)0.057 (3)0.045 (3)0.007 (3)0.014 (3)−0.005 (3)
C80.059 (4)0.048 (3)0.046 (3)0.004 (3)0.011 (3)0.007 (2)
C90.057 (4)0.064 (4)0.049 (4)0.001 (3)0.020 (3)0.011 (3)
C100.067 (4)0.053 (4)0.076 (4)−0.010 (3)0.024 (4)−0.001 (3)
C110.099 (6)0.053 (4)0.213 (9)−0.003 (4)0.092 (6)0.008 (5)
C120.095 (5)0.067 (4)0.087 (5)−0.015 (4)0.044 (5)0.019 (4)
C130.043 (4)0.050 (3)0.053 (4)0.011 (3)0.011 (3)0.002 (3)

Geometric parameters (Å, °)

Ni1—O11.897 (3)C4—C51.387 (7)
Ni1—N11.898 (4)C5—C61.338 (7)
Ni1—N31.940 (5)C5—H50.9300
Ni1—N22.023 (5)C6—H60.9300
N1—C71.281 (6)C7—H70.9300
N1—C81.457 (6)C8—C91.491 (7)
N2—C91.465 (6)C8—H8A0.9700
N2—C101.467 (7)C8—H8B0.9700
N2—H20.90 (5)C9—H9A0.9700
N3—C131.144 (6)C9—H9B0.9700
O1—C21.299 (5)C10—C111.469 (8)
O2—C41.351 (6)C10—H10A0.9700
O2—C121.405 (7)C10—H10B0.9700
S1—C131.588 (6)C11—H11A0.9600
C1—C21.391 (7)C11—H11B0.9600
C1—C71.403 (7)C11—H11C0.9600
C1—C61.404 (7)C12—H12A0.9600
C2—C31.399 (7)C12—H12B0.9600
C3—C41.371 (7)C12—H12C0.9600
C3—H30.9300
O1—Ni1—N193.75 (17)C1—C6—H6119.0
O1—Ni1—N391.31 (16)N1—C7—C1126.0 (5)
N1—Ni1—N3164.13 (18)N1—C7—H7117.0
O1—Ni1—N2169.56 (16)C1—C7—H7117.0
N1—Ni1—N284.54 (18)N1—C8—C9106.6 (4)
N3—Ni1—N293.08 (18)N1—C8—H8A110.4
C7—N1—C8121.0 (5)C9—C8—H8A110.4
C7—N1—Ni1125.4 (4)N1—C8—H8B110.4
C8—N1—Ni1113.5 (3)C9—C8—H8B110.4
C9—N2—C10114.5 (4)H8A—C8—H8B108.6
C9—N2—Ni1105.5 (3)N2—C9—C8108.0 (4)
C10—N2—Ni1115.2 (4)N2—C9—H9A110.1
C9—N2—H2103 (4)C8—C9—H9A110.1
C10—N2—H2113 (4)N2—C9—H9B110.1
Ni1—N2—H2105 (4)C8—C9—H9B110.1
C13—N3—Ni1151.9 (5)H9A—C9—H9B108.4
C2—O1—Ni1126.6 (3)N2—C10—C11114.9 (6)
C4—O2—C12117.3 (5)N2—C10—H10A108.5
C2—C1—C7123.4 (5)C11—C10—H10A108.5
C2—C1—C6118.8 (5)N2—C10—H10B108.5
C7—C1—C6117.9 (5)C11—C10—H10B108.5
O1—C2—C1124.4 (5)H10A—C10—H10B107.5
O1—C2—C3116.9 (5)C10—C11—H11A109.5
C1—C2—C3118.7 (5)C10—C11—H11B109.5
C4—C3—C2120.4 (5)H11A—C11—H11B109.5
C4—C3—H3119.8C10—C11—H11C109.5
C2—C3—H3119.8H11A—C11—H11C109.5
O2—C4—C3123.9 (5)H11B—C11—H11C109.5
O2—C4—C5115.4 (5)O2—C12—H12A109.5
C3—C4—C5120.7 (5)O2—C12—H12B109.5
C6—C5—C4119.2 (5)H12A—C12—H12B109.5
C6—C5—H5120.4O2—C12—H12C109.5
C4—C5—H5120.4H12A—C12—H12C109.5
C5—C6—C1122.1 (5)H12B—C12—H12C109.5
C5—C6—H6119.0N3—C13—S1177.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (5)2.25 (3)3.059 (6)150 (5)
C7—H7···S1ii0.932.833.708 (6)158

Symmetry codes: (i) −x+1, −y+2, −z; (ii) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2410).

References

  • Bruker (1998). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Campbell, T. B. & Urbach, F. L. (1973). Inorg. Chem.12, 1840–1846.
  • Montazerozohori, M., Habibi, M. H., Mokhtari, R., Yamane, Y. & Suzuki, T. (2009). Acta Cryst. E65, m703. [PMC free article] [PubMed]
  • Mukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem.42, 8439–8445. [PubMed]
  • Polt, R., Kelly, B. D., Dangel, B. D., Tadikonda, U. B., Ross, R. E., Raitsimring, A. M. & Astashkin, A. V. (2003). Inorg. Chem.42, 566–574. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wallis, W. N. & Cummings, S. C. (1974). Inorg. Chem.13, 991–994.
  • Zhu, B., Ruang, W. & Zhu, Z. (2004). Acta Cryst. E60, m634–m636.
  • Zhu, C.-G., Wang, F.-W. & Wei, Y.-J. (2006). Acta Cryst. E62, m1816–m1817.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography