PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m158.
Published online 2010 January 16. doi:  10.1107/S1600536810001182
PMCID: PMC2979956

catena-Poly[[bis­(pyrazine-2-carbox­amide-κN 4)mercury(II)]-di-μ-bromido]

Abstract

In the crystal structure of the title compound, [HgBr2(C5H5N3O)2]n, the HgII cation is located on an inversion center and is coordinated by two N atoms from the pyrazine rings and four bridging Br anions in a distorted octa­hedral geometry. The Br anions bridge the HgII cations with significantly different Hg—Br bond distances of 2.4775 (8) and 3.1122 (8) Å, forming polymeric chains running along the a axis. Inter­molecular N—H(...)O and N—H(...)N hydrogen bonds are effective in the stabilization of the crystal structure.

Related literature

For metal-binding properties of pyridine and pyrazine ligands, see: Sasan et al. (2008 [triangle]); Khavasi et al. (2009 [triangle]); Petro & Mukherjee (1999 [triangle]); Sigh & Mukherjee (2005 [triangle]). For the coordination modes of pyrazine­amide, see: Hausmann & Brooker (2004 [triangle]); Cati & Stoeckli-Evans (2004 [triangle]); Miyazaki et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m158-scheme1.jpg

Experimental

Crystal data

  • [HgBr2(C5H5N3O)2]
  • M r = 606.63
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m158-efi1.jpg
  • a = 3.9628 (5) Å
  • b = 6.5162 (9) Å
  • c = 15.0388 (19) Å
  • α = 101.783 (10)°
  • β = 93.418 (11)°
  • γ = 95.214 (11)°
  • V = 377.36 (9) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 15.50 mm−1
  • T = 298 K
  • 0.50 × 0.06 × 0.03 mm

Data collection

  • Stoe IPDS II diffractometer
  • Absorption correction: multi-scan (X-RED and X-SHAPE; Stoe & Cie, 2005 [triangle]) T min = 0.345, T max = 0.630
  • 4311 measured reflections
  • 2002 independent reflections
  • 1933 reflections with I > 2σ(I)
  • R int = 0.144

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.173
  • S = 1.11
  • 2002 reflections
  • 97 parameters
  • H-atom parameters constrained
  • Δρmax = 3.93 e Å−3
  • Δρmin = −5.48 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001182/xu2716sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001182/xu2716Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to acknowledge Shahid Beheshti University, G·C., for financial support.

supplementary crystallographic information

Comment

A large variety of pyridine and pyrazine amide ligands have been synthesized for investigating their metal-binding properties (Sasan et al., 2008; Khavasi et al., 2009; Petro & Mukherjee, 1999; Sigh & Mukherjee, 2005). The coordination chemistry of parazineamides is rich. Examples of coordination via the pyrazine N atoms, the carbonyl O atoms and the amide N atoms of the ligand in a non-, mono-, or bis-deprotonated form are known (Hausmann & Brooker, 2004; Cati & Stoeckli-Evans, 2004; Miyazaki et al., 2007) and metal complexes of the ligands have been used extensively to mimic the properties of biologically active systems. Here we synthesized the title compound, (I), and report here its crystal structure.

The asymmetric unit of the title compound, (I), contains one half-molecule (Fig. 1). The HgII atom is six-coordinated in a distorted octahedral configuration by two N atoms from pyrazine amides and four bridging Br atoms. The bridging function of bromo atoms leads to a one-dimensional chain structure. The Hg—Br and Hg—N bond lengths and angles (Table 1) are within normal ranges. In the crystal structure (Fig. 2), intermolecular N—H···O and N—H···N hydrogen bonds (Table 2) result in the formation of a supramolecular structure, in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, a solution of pyrazineamide (0.246 g, 2.0 mmol) in methanol (10 ml) was added to a solution of HgBr2 (0.360 g, 1.0 mmol) in methanol (5 ml) at room temperature. The suitable crystals for X-ray analysis were obtained by slow evaporation from methanolic solution after one week (yield 0.500 g, 82.5%).

Refinement

All of the H atoms were positioned geometrically with C–H = 0.93 and N—H = 0.86 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N). The largest peak and deepest hole are near to the Hg1 atom (0.90 and 0.79 Å, respectively).

Figures

Fig. 1.
The molecular structure with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
Fig. 2.
A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

[HgBr2(C5H5N3O)2]Z = 1
Mr = 606.63F(000) = 278
Triclinic, P1Dx = 2.669 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.9628 (5) ÅCell parameters from 765 reflections
b = 6.5162 (9) Åθ = 3.2–29.1°
c = 15.0388 (19) ŵ = 15.50 mm1
α = 101.783 (10)°T = 298 K
β = 93.418 (11)°Needle, colorless
γ = 95.214 (11)°0.5 × 0.06 × 0.03 mm
V = 377.36 (9) Å3

Data collection

Stoe IPDS II diffractometer1933 reflections with I > 2σ(I)
rotation method scansRint = 0.144
Absorption correction: multi-scan (X-RED and X-SHAPE; Stoe & Cie, 2005)θmax = 29.1°, θmin = 3.2°
Tmin = 0.345, Tmax = 0.630h = −5→5
4311 measured reflectionsk = −8→8
2002 independent reflectionsl = −20→20

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.065w = 1/[σ2(Fo2) + (0.1262P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.173(Δ/σ)max < 0.001
S = 1.11Δρmax = 3.93 e Å3
2002 reflectionsΔρmin = −5.48 e Å3
97 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.402 (2)0.5193 (13)0.7914 (6)0.0456 (17)
H10.32150.65060.80640.055*
C20.400 (2)0.4210 (13)0.7010 (6)0.0444 (16)
H20.31560.48760.65660.053*
C30.629 (2)0.1448 (13)0.7407 (5)0.0414 (15)
H30.70490.01230.72520.05*
C40.638 (2)0.2438 (14)0.8329 (6)0.0381 (15)
C50.790 (2)0.1363 (13)0.9029 (5)0.0413 (15)
N10.519 (2)0.4278 (10)0.8588 (5)0.0420 (14)
N20.5148 (18)0.2350 (10)0.6752 (4)0.0422 (13)
N30.779 (2)0.2309 (12)0.9885 (5)0.0525 (17)
H3A0.86330.17661.03130.063*
H3B0.68830.34711.00170.063*
O10.914 (2)−0.0290 (12)0.8783 (5)0.0577 (19)
Hg10.500.50.0390 (2)
Br10.86218 (19)−0.24778 (12)0.55380 (6)0.0394 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.065 (5)0.036 (3)0.038 (4)0.015 (3)−0.006 (3)0.011 (3)
C20.055 (4)0.042 (4)0.037 (3)0.004 (3)−0.009 (3)0.014 (3)
C30.056 (4)0.039 (3)0.030 (3)0.013 (3)−0.006 (3)0.006 (3)
C40.048 (4)0.037 (3)0.028 (3)0.006 (3)−0.005 (3)0.004 (3)
C50.055 (4)0.041 (4)0.029 (3)0.011 (3)−0.002 (3)0.009 (3)
N10.062 (4)0.031 (3)0.032 (3)0.007 (3)−0.007 (3)0.007 (2)
N20.057 (3)0.040 (3)0.029 (3)0.007 (3)−0.007 (2)0.010 (2)
N30.085 (5)0.045 (3)0.030 (3)0.023 (4)−0.005 (3)0.009 (3)
O10.095 (6)0.049 (3)0.031 (3)0.032 (4)−0.005 (3)0.007 (2)
Hg10.0387 (3)0.0433 (3)0.0380 (3)0.01479 (17)−0.00149 (16)0.01255 (19)
Br10.0390 (4)0.0374 (4)0.0453 (5)0.0116 (3)0.0000 (3)0.0146 (3)

Geometric parameters (Å, °)

C1—N11.356 (10)C5—O11.224 (11)
C1—C21.378 (12)C5—N31.313 (10)
C1—H10.93N3—H3A0.86
C2—N21.325 (11)N3—H3B0.86
C2—H20.93Hg1—Br12.4775 (8)
C3—N21.323 (9)Hg1—Br1i2.4775 (8)
C3—C41.402 (11)Hg1—Br1ii3.1122 (8)
C3—H30.93Hg1—Br1iii3.1122 (8)
C4—N11.321 (12)Hg1—N22.758 (6)
C4—C51.505 (12)Hg1—N2i2.758 (6)
N1—C1—C2121.2 (8)N3—C5—C4116.1 (8)
N1—C1—H1119.4C4—N1—C1116.5 (7)
C2—C1—H1119.4C3—N2—C2116.8 (7)
N2—C2—C1122.2 (7)C5—N3—H3A120
N2—C2—H2118.9C5—N3—H3B120
C1—C2—H2118.9H3A—N3—H3B120
N2—C3—C4121.7 (8)Br1—Hg1—Br1i180.00 (4)
N2—C3—H3119.1Br1—Hg1—Br1ii90.44 (2)
C4—C3—H3119.1Br1i—Hg1—Br1ii89.56 (2)
N1—C4—C3121.5 (8)Br1—Hg1—Br1iii89.56 (2)
N1—C4—C5120.1 (7)Br1i—Hg1—Br1iii90.44 (2)
C3—C4—C5118.4 (8)Br1ii—Hg1—Br1iii180.000 (17)
O1—C5—N3124.2 (8)Hg1—Br1—Hg1iv89.56 (2)
O1—C5—C4119.7 (7)
N1—C1—C2—N2−0.7 (15)C3—C4—C5—N3−177.2 (9)
N2—C3—C4—N12.9 (14)C3—C4—N1—C1−2.6 (12)
N2—C3—C4—C5−176.4 (8)C5—C4—N1—C1176.7 (9)
N1—C4—C5—O1−176.4 (8)C2—C1—N1—C41.6 (13)
C3—C4—C5—O13.0 (14)C4—C3—N2—C2−1.9 (12)
N1—C4—C5—N33.4 (13)C1—C2—N2—C30.8 (13)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y, −z+1; (iii) x−1, y, z; (iv) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···O1v0.862.022.881 (11)174
N3—H3B···N1vi0.862.533.214 (11)137

Symmetry codes: (v) −x+2, −y, −z+2; (vi) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2716).

References

  • Cati, D. S. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, m177–m179.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hausmann, J. & Brooker, S. (2004). Chem. Commun. pp. 1530–1531. [PubMed]
  • Khavasi, H. R., Sasan, K., Pirouzmand, M. & Ebrahimi, S. N. (2009). Inorg. Chem.48, 5593–5595. [PubMed]
  • Miyazaki, S., Ohkubo, K., Kojima, T. & Fukuzumi, S. (2007). Angew. Chem. Int. Ed.46, 905–908. [PubMed]
  • Petro, A. K. & Mukherjee, R. (1999). Inorg. Chem.38, 1388–1393.
  • Sasan, K., Khavasi, H. R. & Davari, M. D. (2008). Monatsh. Chem.139, 773–780.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sigh, A. K. & Mukherjee, R. (2005). Dalton Trans. pp. 2886–2891. [PubMed]
  • Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography