PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m188.
Published online 2010 January 23. doi:  10.1107/S1600536810002126
PMCID: PMC2979954

Diazido­bis[(1-methyl-1H-benzimidazol-2-yl)methanol-κ2 N 3,O]manganese(II)

Abstract

The title complex, [Mn(N3)2(C9H10N2O)2], possesses crystallographically imposed twofold symmetry. The MnII atom is coordinated by four N atoms and two O atoms in a distorted octa­hedral geometry. The crystal packing is stabilized by strong inter­molecular O—H(...)N hydrogen bonds.

Related literature

For the synthesis of the ligand, see: van Albada et al. (1995 [triangle]) and literature cited therein. For the metal(II) complexes of a similar N-heterocycle, see: Zeng et al. (2006 [triangle]); Zhou et al. (2007 [triangle]); Alagna et al. (1984 [triangle]); Hamilton et al. (1979 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m188-scheme1.jpg

Experimental

Crystal data

  • [Mn(N3)2(C9H10N2O)2]
  • M r = 463.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m188-efi2.jpg
  • a = 15.466 (3) Å
  • b = 7.5438 (16) Å
  • c = 18.095 (4) Å
  • β = 109.989 (4)°
  • V = 1984.0 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.71 mm−1
  • T = 173 K
  • 0.33 × 0.22 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan SADABS (Sheldrick, 1996 [triangle]) T min = 0.801, T max = 0.933
  • 4125 measured reflections
  • 1741 independent reflections
  • 1345 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.116
  • S = 1.02
  • 1741 reflections
  • 142 parameters
  • H-atom parameters constrained
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810002126/si2238sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002126/si2238Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Central South University and Guangxi Normal University for supporting this study.

supplementary crystallographic information

Comment

The coordinated modes of (1-methyl-1H-benzimidazol-2-yl)methanol ligand are similar to our previously repored benzimidazol-2-yl methanol from the structural point, the latter has been shown to bind to cobalt(II) as a neutral chelate (Zeng et al., 2006, Zhou et al., 2007). This feature is also preserved in the present manganese(II) complex.

In the title compound, the ligand chelates through the hydroxyl O and imino N atoms, resulting in a N4O2Mn octahedral geometry at the metal center (Fig. 1, Table 1), like that observed in copper (Hamilton et al., 1979) and nickel (Alagna et al., 1984) adducts. In this structure, the azide anion as a terminal ligand coordinated to MnII atom, and N–N–N bond lengths and bond angle are close to compound [Cu(tbz)(N3)2]2(CH3OH)2 (tbz = bis(2-benzimidazolyl)propane) (Albada et al., 1995).The complex possesses crystallographically imposed twofold symmetry. The crystal packing is stabilized by strong intermolecular O—H···N hydrogen bonds which extend along the crystallographic twofold rotation axis (Fig. 2, Table 2).

Experimental

(1-methyl-1H-benzimidazol-2-yl)methanol was purchased from a chemical supplier. This reagent (0.16 g, 1 mmol), manganese(II) nitrate hexahydrate (0.14 g, 0.5 mmol) and sodium azide (0.07 g, 1 mmol) were dissolved in water (10 ml) that was kept at about 333 K. Colorless blocks separated from the solution after one week.

Refinement

The C-bound H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2(1.5)Ueq(C, Cmethyl). The hydroxy H atom has been located in a difference Fourier map and refined isotropically with a distance restraint of O—H = 0.85 (1) Å, and Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
Anisotropic displacement ellipsoid plot of the [Mn(II)(N3)2(C9H10N2O)2] molecule at the 50% probability level; hydrogen atoms are drawn as sphere of arbitrary radius. Symmetry codes: (i) -x, y, -z + 1/2, for the unlabelled atoms.
Fig. 2.
Part of the hydrogen bonded chain along [010] direction. Hydrogen bonds are shown as dashed lines. Symmetry codes: (i) x, y - 1, z.

Crystal data

[Mn(N3)2(C9H10N2O)2]F(000) = 956
Mr = 463.38Dx = 1.551 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1818 reflections
a = 15.466 (3) Åθ = 2.4–26.7°
b = 7.5438 (16) ŵ = 0.71 mm1
c = 18.095 (4) ÅT = 173 K
β = 109.989 (4)°Block, colorless
V = 1984.0 (7) Å30.33 × 0.22 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer1741 independent reflections
Radiation source: fine-focus sealed tube1345 reflections with I > 2σ(I)
graphiteRint = 0.029
phi and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan SADABS (Sheldrick, 1996)h = −16→18
Tmin = 0.801, Tmax = 0.933k = −8→8
4125 measured reflectionsl = −15→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0608P)2 + 4.1072P] where P = (Fo2 + 2Fc2)/3
1741 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.In Checkcif report, the following ALERTS were generatedPLAT230_ALERT_2_C Hirshfeld Test Diff for N3 – N4.. 5.98 su Author response: It is due to electron shift or resonance (N=N–N or N–N=N) bond lengths appear shorter than expected, see: Albada et al. (1995).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.12170 (15)0.1356 (3)0.26588 (12)0.0324 (5)
H10.12640.03430.28750.049*
Mn10.00000.32504 (9)0.25000.0247 (2)
N1−0.00030 (17)0.2562 (3)0.13315 (13)0.0228 (6)
N20.07803 (16)0.1833 (3)0.05480 (14)0.0226 (5)
N30.1101 (2)0.5198 (4)0.28397 (17)0.0405 (7)
N40.11891 (18)0.6678 (4)0.30523 (15)0.0324 (7)
N50.1360 (3)0.8099 (4)0.3311 (2)0.0545 (9)
C10.1524 (2)0.1270 (5)0.20037 (18)0.0316 (8)
H1A0.16980.00380.19280.038*
H1B0.20700.20370.20960.038*
C20.0761 (2)0.1879 (4)0.12911 (17)0.0226 (6)
C3−0.05362 (19)0.2995 (4)0.05571 (17)0.0208 (6)
C4−0.1407 (2)0.3733 (4)0.02570 (18)0.0257 (7)
H4A−0.17450.40340.05900.031*
C5−0.1764 (2)0.4013 (4)−0.05442 (18)0.0307 (7)
H5A−0.23590.4520−0.07670.037*
C6−0.1269 (2)0.3569 (4)−0.10337 (18)0.0331 (8)
H6A−0.15380.3782−0.15830.040*
C7−0.0403 (2)0.2830 (4)−0.07448 (18)0.0289 (7)
H7B−0.00680.2526−0.10800.035*
C8−0.0045 (2)0.2554 (4)0.00618 (17)0.0230 (6)
C90.1533 (2)0.1183 (5)0.03086 (19)0.0309 (7)
H9A0.1617−0.00890.04190.046*
H9B0.21000.18140.06020.046*
H9C0.13870.1388−0.02560.046*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0388 (13)0.0343 (13)0.0242 (11)0.0082 (10)0.0111 (10)0.0071 (9)
Mn10.0313 (4)0.0266 (4)0.0185 (3)0.0000.0116 (3)0.000
N10.0244 (13)0.0266 (14)0.0183 (12)0.0014 (11)0.0087 (10)−0.0004 (10)
N20.0221 (13)0.0260 (13)0.0238 (12)0.0008 (10)0.0129 (10)−0.0026 (10)
N30.0522 (19)0.0308 (18)0.0451 (18)−0.0144 (14)0.0254 (15)−0.0073 (14)
N40.0325 (15)0.043 (2)0.0243 (14)−0.0057 (14)0.0135 (12)0.0027 (13)
N50.081 (3)0.0340 (19)0.048 (2)−0.0135 (18)0.0225 (19)−0.0063 (16)
C10.0296 (17)0.0375 (19)0.0296 (17)0.0092 (14)0.0125 (14)0.0043 (14)
C20.0248 (16)0.0230 (16)0.0214 (14)−0.0001 (13)0.0096 (12)−0.0014 (12)
C30.0216 (15)0.0198 (15)0.0221 (14)−0.0029 (12)0.0088 (12)0.0016 (11)
C40.0231 (16)0.0266 (17)0.0295 (16)−0.0012 (13)0.0117 (13)−0.0016 (13)
C50.0238 (16)0.0314 (18)0.0314 (17)0.0006 (14)0.0023 (14)0.0036 (14)
C60.0376 (19)0.036 (2)0.0205 (15)−0.0087 (15)0.0031 (14)0.0024 (13)
C70.0333 (18)0.0334 (19)0.0235 (15)−0.0070 (14)0.0140 (14)−0.0023 (13)
C80.0233 (15)0.0240 (15)0.0237 (15)−0.0033 (12)0.0106 (12)−0.0022 (12)
C90.0273 (17)0.0376 (19)0.0330 (17)0.0039 (14)0.0170 (14)−0.0043 (14)

Geometric parameters (Å, °)

O1—C11.421 (4)C1—H1A0.9900
O1—Mn12.302 (2)C1—H1B0.9900
O1—H10.8500C3—C41.385 (4)
Mn1—N32.172 (3)C3—C81.399 (4)
Mn1—N3i2.172 (3)C4—C51.380 (4)
Mn1—N12.176 (2)C4—H4A0.9500
Mn1—N1i2.176 (2)C5—C61.395 (5)
Mn1—O1i2.302 (2)C5—H5A0.9500
N1—C21.314 (4)C6—C71.379 (5)
N1—C31.400 (4)C6—H6A0.9500
N2—C21.355 (4)C7—C81.388 (4)
N2—C81.389 (4)C7—H7B0.9500
N2—C91.459 (4)C9—H9A0.9800
N3—N41.174 (4)C9—H9B0.9800
N4—N51.163 (4)C9—H9C0.9800
C1—C21.492 (4)
C1—O1—Mn1114.60 (17)C2—C1—H1B110.0
C1—O1—H1110.0H1A—C1—H1B108.4
Mn1—O1—H1123.6N1—C2—N2113.0 (3)
N3—Mn1—N3i94.89 (17)N1—C2—C1122.2 (3)
N3—Mn1—N1100.23 (10)N2—C2—C1124.8 (3)
N3i—Mn1—N198.36 (10)C4—C3—C8120.8 (3)
N3—Mn1—N1i98.36 (10)C4—C3—N1130.3 (3)
N3i—Mn1—N1i100.23 (10)C8—C3—N1108.8 (3)
N1—Mn1—N1i152.37 (14)C5—C4—C3117.4 (3)
N3—Mn1—O1i169.59 (9)C5—C4—H4A121.3
N3i—Mn1—O1i81.74 (10)C3—C4—H4A121.3
N1—Mn1—O1i90.02 (9)C4—C5—C6121.4 (3)
N1i—Mn1—O1i72.72 (8)C4—C5—H5A119.3
N3—Mn1—O181.74 (10)C6—C5—H5A119.3
N3i—Mn1—O1169.59 (9)C7—C6—C5122.0 (3)
N1—Mn1—O172.72 (8)C7—C6—H6A119.0
N1i—Mn1—O190.02 (9)C5—C6—H6A119.0
O1i—Mn1—O1103.23 (12)C6—C7—C8116.5 (3)
C2—N1—C3105.6 (2)C6—C7—H7B121.8
C2—N1—Mn1116.39 (19)C8—C7—H7B121.8
C3—N1—Mn1136.2 (2)C7—C8—N2132.4 (3)
C2—N2—C8106.9 (2)C7—C8—C3121.9 (3)
C2—N2—C9126.4 (3)N2—C8—C3105.7 (2)
C8—N2—C9126.6 (2)N2—C9—H9A109.5
N4—N3—Mn1136.7 (3)N2—C9—H9B109.5
N5—N4—N3173.4 (4)H9A—C9—H9B109.5
O1—C1—C2108.4 (2)N2—C9—H9C109.5
O1—C1—H1A110.0H9A—C9—H9C109.5
C2—C1—H1A110.0H9B—C9—H9C109.5
O1—C1—H1B110.0

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N5ii0.851.852.701 (4)178

Symmetry codes: (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2238).

References

  • Alagna, L., Hasnain, S. S., Piggott, B. & Williams, D. J. (1984). Biochem J 220, 591–595. [PubMed]
  • Albada, G. A. van, Lakin, M. T., Veldman, N., Spek, A. J. & Reedijk, J. (1995). Inorg Chem 34, 4910–4917.
  • Barbour, L. J. (2001). J Supramol Chem 1, 189–191.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison,Wisconsin, USA.
  • Hamilton, G. J., Ferraro, J. R. & Sinn, E. (1979). J Chem Soc Dalton Trans pp. 515–519.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). publCIF. In preparation.
  • Zeng, M.-H., Zhou, Y.-L. & Ng, S. W. (2006). Acta Cryst. E62, m2101–m2102.
  • Zhou, Y.-L., Zeng, M.-H. & Ng, S. W. (2007). Acta Cryst. E63, m15–m16.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography