PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m242–m243.
Published online 2010 January 30. doi:  10.1107/S1600536810003351
PMCID: PMC2979945

Bis{2-hydroxy­imino-N′-[1-(2-pyrid­yl)ethyl­idene]propanohydrazidato}zinc(II) dihydrate

Abstract

The title compound, [Zn(C10H11N4O2)2]·2H2O, was prepared by the reaction between Zn(CH3COO)2·2H2O and 2-hydroxy­imino-N′-[1-(2-pyrid­yl)ethyl­idene]propano­hydrazide (Hpop). The central ZnII atom has a distorted tetra­gonal-bipyramidal coordination geometry formed by two amide O atoms and four N atoms of two azomethine and two pyridine groups. In the crystal, complex mol­ecules form layers parallel to the crystallographic b direction. The layers are connected by O—H(...)N and O—H(...)O hydrogen bonds involving the solvent water mol­ecules.

Related literature

For zinc(II)-containing complexes with similiar ligands, see: Petrusenko et al. (1997 [triangle]); Comba et al. (2002 [triangle]); Kasuga et al. (2003 [triangle]). For the structural parameters of amide derivatives of 2-hydroxy­imino­propanoic acid, see: Onindo et al. (1995 [triangle]); Sliva et al. (1997a [triangle],b [triangle]); Mokhir et al. (2002 [triangle]); Moroz et al. (2009a [triangle],b [triangle]). For the preparation and characterization of 3d-metal complexes with 2-hydroxy­imino-N′-[1-(2-pyrid­yl)ethyl­idene]propanohydrazone, see: Moroz et al. (2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m242-scheme1.jpg

Experimental

Crystal data

  • [Zn(C10H11N4O2)2]·2H2O
  • M r = 539.86
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m242-efi1.jpg
  • a = 8.3241 (3) Å
  • b = 10.6299 (4) Å
  • c = 13.9006 (5) Å
  • α = 94.184 (2)°
  • β = 101.389 (2)°
  • γ = 108.052 (2)°
  • V = 1134.48 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.14 mm−1
  • T = 100 K
  • 0.28 × 0.07 × 0.02 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008 [triangle]) T min = 0.743, T max = 0.977
  • 21551 measured reflections
  • 5171 independent reflections
  • 4253 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.092
  • S = 1.05
  • 5171 reflections
  • 320 parameters
  • H-atom parameters constrained
  • Δρmax = 0.95 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: COLLECT (Bruker, 2004 [triangle]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810003351/jh2129sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003351/jh2129Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. F28/241–2009).

supplementary crystallographic information

Comment

As a part of our study of coordination compounds based on oxime-containing Schiff bases we would like to present the structure of the title compound 1, Fig. 1, which is based on polynucleative strand-type ligand 2-hydroxyimino-N'-[1-(2-pyridyl)ethylidene]propanohydrazone (Hpop) (Fig. 1). It has been shown previously that Hpop is able to form mono- and tetranuclear [2 x 2] grid-like assemblies with 3d-metal ions (Moroz et al., 2008a,b).

The title compound consists of neutral complex molecules and solvating water molecules. Zinc ion has a distorted tetragonal bipyramidal geometry. The coordination polyhedron is formed by two oxygen atoms from the amide groups and four nitrogen atoms belonging to two azomethine and two pyridine groups. The Zn—N and Zn—O bond lengths are comparable to previously reported zinc complexes with thiosemicarbasone and semicarbasone derivatives (Kasuga et al., (2003)), ligands with pyridine groups complexed to the metal ion (Petrusenko et al. (1997), Comba et al., (2002)) and the zinc-containing complex based on Hpop (Moroz et al., 2008b) (Table 1). The bite angles around the central atom deviate from an ideal square-planar configuration, that is a consequence of the formation of four almost flat five-membered chelate rings (Table 1). The ligands exist in complex molecule in singly charged form due to deprotonation of the amide group, C–N, C–O and N–N' bond distances are typical for deprotonated functions. In Hpop the oxime group is situated in anti- position to the amide group which was early shown in the structures of the free ligand and similiar compounds - amide derivatives of 2-hydroxyiminopropanoic acid (Onindo et al. (1995); Sliva et al. (1997a,b); Mokhir et al. (2002); Moroz et al., 2009a,b).

In the crystal packing the molecules of 1 form columns along a crystallographic direction due to hydrogen bonds and π-stacking interaction (Fig. 2). The columns are connected in 3D structure by a variety of hydrogen bonds where solvated water molecules act as donors and O and N atoms of the oxime group and O atom of the amide group of the ligand act as acceptors (Table 2).

Experimental

Zinc(II) acetate (0.011 g, 0.05 mmol) in 5 ml H2O was added to 10 ml of hot methanol solution of Hpop (0.022 g, 0.1 mmol) and followed by 1 ml of alkali solution (0.1 M KOH). The mixture was left for slow evaporation at room temperature. After 5 days cubic yellowish crystals of 1 suitable for X-ray analysis were obtained.

Refinement

The H2O hydrogen atoms were located from the difference Fourier map but constrained to ride on their parent atom, with Uiso = 1.5 Ueq(parent atom). Other hydrogen atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.95-0.98 Å, and Uiso = 1.2-1.5 Ueq(parent atom). The highest peak is located 1.15 Å from atom H5O and the deepest hole is located 0.82 Å from atom Zn1.

Figures

Fig. 1.
1 A view of compound 1, with displacement ellipsoids shown at the 40% probability level.
Fig. 2.
A packing diagram for 1 viewed in projection down the a axis. Hydrogen bonds are indicated by dashed lines; H atoms are omitted for clarity.

Crystal data

[Zn(C10H11N4O2)2]·2H2OZ = 2
Mr = 539.86F(000) = 560
Triclinic, P1Dx = 1.580 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3241 (3) ÅCell parameters from 4952 reflections
b = 10.6299 (4) Åθ = 1.0–27.5°
c = 13.9006 (5) ŵ = 1.14 mm1
α = 94.184 (2)°T = 100 K
β = 101.389 (2)°Needle, yellow
γ = 108.052 (2)°0.28 × 0.07 × 0.02 mm
V = 1134.48 (7) Å3

Data collection

Nonius KappaCCD diffractometer5171 independent reflections
Radiation source: fine-focus sealed tube4253 reflections with I > 2σ(I)
horizontally mounted graphite crystalRint = 0.048
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.4°
[var phi] scans and ω scans with κ offseth = −10→10
Absorption correction: multi-scan (SADABS; Version 2008/1; Sheldrick, 2008)k = −13→13
Tmin = 0.743, Tmax = 0.977l = −18→18
21551 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0417P)2 + 0.8841P] where P = (Fo2 + 2Fc2)/3
5171 reflections(Δ/σ)max < 0.001
320 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.39746 (3)0.27581 (3)0.304853 (19)0.01820 (9)
O10.16169 (19)0.20226 (15)0.34643 (12)0.0202 (3)
O2−0.32670 (19)−0.16202 (17)0.32111 (13)0.0239 (4)
H2O−0.3576−0.25260.30120.036*
O30.30726 (19)0.37780 (16)0.18911 (12)0.0204 (3)
O40.4981 (2)0.70910 (18)0.00903 (13)0.0290 (4)
H4O0.60650.76010.00130.044*
O50.1803 (2)0.1858 (2)0.01793 (14)0.0367 (4)
H5P0.21190.25960.06460.055*
H5O0.12640.1984−0.03830.055*
O60.0879 (2)0.29498 (19)−0.16109 (14)0.0351 (4)
H6O0.06970.2177−0.20170.053*
H6P0.20770.3384−0.14710.053*
N10.5988 (2)0.2424 (2)0.22445 (14)0.0207 (4)
N20.3039 (2)0.07661 (19)0.24489 (14)0.0175 (4)
N30.1450 (2)0.00054 (19)0.25994 (14)0.0181 (4)
N4−0.1642 (2)−0.11100 (19)0.29900 (15)0.0205 (4)
N50.5549 (2)0.2876 (2)0.45404 (14)0.0212 (4)
N60.5524 (2)0.4762 (2)0.34417 (14)0.0190 (4)
N70.5460 (2)0.55914 (19)0.27198 (14)0.0188 (4)
N80.5314 (3)0.6441 (2)0.09127 (15)0.0230 (4)
C10.7541 (3)0.3275 (3)0.22043 (18)0.0258 (5)
H10.78570.41850.24820.031*
C20.8707 (3)0.2868 (3)0.17679 (19)0.0306 (6)
H20.98110.34860.17670.037*
C30.8235 (3)0.1560 (3)0.13393 (18)0.0288 (6)
H30.90050.12630.10350.035*
C40.6620 (3)0.0680 (3)0.13569 (18)0.0255 (5)
H40.6257−0.02240.10550.031*
C50.5538 (3)0.1148 (2)0.18269 (16)0.0203 (5)
C60.3825 (3)0.0232 (2)0.19170 (16)0.0190 (5)
C70.3161 (3)−0.1184 (3)0.14258 (19)0.0264 (5)
H7A0.3898−0.16700.17440.040*
H7B0.3181−0.12090.07220.040*
H7C0.1966−0.16060.14880.040*
C80.0873 (3)0.0788 (2)0.31405 (16)0.0165 (4)
C9−0.0868 (3)0.0123 (2)0.33642 (16)0.0174 (4)
C10−0.1580 (3)0.0927 (2)0.39855 (18)0.0223 (5)
H10A−0.28520.05830.37950.034*
H10B−0.11680.18650.38830.034*
H10C−0.11870.08600.46860.034*
C110.5453 (3)0.1915 (3)0.51063 (18)0.0249 (5)
H110.46000.10610.48650.030*
C120.6559 (3)0.2109 (3)0.60431 (19)0.0302 (6)
H120.65000.13890.64170.036*
C130.7726 (3)0.3356 (3)0.64108 (19)0.0305 (6)
H130.84730.35140.70510.037*
C140.7817 (3)0.4389 (3)0.58458 (18)0.0270 (5)
H140.86020.52650.60990.032*
C150.6724 (3)0.4112 (2)0.48927 (17)0.0212 (5)
C160.6797 (3)0.5119 (2)0.42118 (16)0.0194 (5)
C170.8289 (3)0.6397 (2)0.44150 (18)0.0255 (5)
H17A0.84760.67080.37860.038*
H17B0.93380.62500.47740.038*
H17C0.80320.70740.48180.038*
C180.4150 (3)0.4947 (2)0.19584 (17)0.0183 (4)
C190.3910 (3)0.5686 (2)0.10840 (17)0.0199 (5)
C200.2114 (3)0.5440 (3)0.04913 (19)0.0290 (6)
H20A0.21240.61320.00610.043*
H20B0.13490.54680.09400.043*
H20C0.16880.45600.00830.043*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.01308 (13)0.01868 (15)0.01989 (15)0.00111 (10)0.00272 (10)0.00585 (10)
O10.0168 (8)0.0165 (8)0.0252 (9)0.0013 (6)0.0066 (6)0.0030 (7)
O20.0147 (8)0.0208 (9)0.0335 (10)−0.0003 (7)0.0097 (7)0.0043 (7)
O30.0172 (8)0.0173 (8)0.0217 (8)0.0009 (6)0.0003 (6)0.0054 (7)
O40.0324 (9)0.0346 (10)0.0252 (9)0.0134 (8)0.0100 (7)0.0171 (8)
O50.0357 (10)0.0396 (12)0.0305 (10)0.0057 (9)0.0089 (8)0.0057 (9)
O60.0248 (9)0.0351 (11)0.0401 (11)0.0065 (8)0.0062 (8)−0.0079 (9)
N10.0138 (9)0.0276 (11)0.0197 (10)0.0043 (8)0.0034 (7)0.0100 (8)
N20.0132 (8)0.0207 (10)0.0195 (10)0.0047 (7)0.0051 (7)0.0083 (8)
N30.0134 (9)0.0175 (10)0.0224 (10)0.0016 (7)0.0067 (7)0.0050 (8)
N40.0154 (9)0.0199 (10)0.0255 (10)0.0022 (8)0.0084 (8)0.0050 (8)
N50.0182 (9)0.0266 (11)0.0214 (10)0.0080 (8)0.0076 (8)0.0088 (8)
N60.0158 (9)0.0230 (10)0.0161 (9)0.0039 (8)0.0025 (7)0.0038 (8)
N70.0169 (9)0.0198 (10)0.0183 (9)0.0038 (8)0.0035 (7)0.0065 (8)
N80.0282 (11)0.0239 (11)0.0213 (10)0.0116 (9)0.0080 (8)0.0113 (8)
C10.0178 (11)0.0333 (14)0.0240 (12)0.0037 (10)0.0042 (9)0.0119 (11)
C20.0159 (11)0.0499 (18)0.0265 (13)0.0069 (11)0.0083 (10)0.0175 (12)
C30.0204 (12)0.0486 (17)0.0238 (13)0.0153 (12)0.0098 (10)0.0134 (12)
C40.0224 (12)0.0377 (15)0.0207 (12)0.0136 (11)0.0072 (10)0.0092 (11)
C50.0171 (11)0.0318 (14)0.0146 (11)0.0095 (10)0.0044 (9)0.0112 (10)
C60.0156 (10)0.0267 (13)0.0153 (11)0.0068 (9)0.0037 (8)0.0071 (9)
C70.0252 (12)0.0289 (14)0.0269 (13)0.0087 (10)0.0110 (10)0.0032 (11)
C80.0141 (10)0.0185 (11)0.0163 (11)0.0044 (9)0.0023 (8)0.0070 (9)
C90.0132 (10)0.0196 (12)0.0189 (11)0.0039 (9)0.0040 (8)0.0060 (9)
C100.0161 (11)0.0220 (12)0.0270 (12)0.0026 (9)0.0072 (9)0.0019 (10)
C110.0239 (12)0.0290 (14)0.0259 (13)0.0099 (10)0.0104 (10)0.0115 (10)
C120.0324 (14)0.0428 (16)0.0264 (13)0.0204 (12)0.0137 (11)0.0198 (12)
C130.0254 (13)0.0471 (17)0.0229 (13)0.0151 (12)0.0068 (10)0.0128 (12)
C140.0197 (11)0.0385 (15)0.0204 (12)0.0073 (10)0.0022 (9)0.0057 (11)
C150.0149 (10)0.0300 (13)0.0189 (11)0.0074 (9)0.0052 (9)0.0035 (10)
C160.0154 (10)0.0240 (12)0.0164 (11)0.0041 (9)0.0028 (8)0.0015 (9)
C170.0200 (11)0.0252 (13)0.0238 (12)0.0005 (10)−0.0001 (9)0.0016 (10)
C180.0136 (10)0.0202 (12)0.0218 (11)0.0053 (9)0.0054 (9)0.0054 (9)
C190.0207 (11)0.0176 (11)0.0205 (11)0.0058 (9)0.0034 (9)0.0029 (9)
C200.0241 (12)0.0321 (15)0.0277 (13)0.0083 (11)−0.0011 (10)0.0096 (11)

Geometric parameters (Å, °)

Zn1—N22.061 (2)C3—C41.385 (3)
Zn1—N62.085 (2)C3—H30.9500
Zn1—O12.0880 (15)C4—C51.396 (3)
Zn1—O32.1470 (15)C4—H40.9500
Zn1—N52.1955 (19)C5—C61.492 (3)
Zn1—N12.2877 (19)C6—C71.491 (3)
O1—C81.268 (3)C7—H7A0.9800
O2—N41.397 (2)C7—H7B0.9800
O2—H2O0.9213C7—H7C0.9800
O3—C181.272 (3)C8—C91.508 (3)
O4—N81.404 (2)C9—C101.495 (3)
O4—H4O0.9287C10—H10A0.9800
O5—H5P0.9140C10—H10B0.9800
O5—H5O0.8626C10—H10C0.9800
O6—H6O0.9154C11—C121.398 (4)
O6—H6P0.9335C11—H110.9500
N1—C51.342 (3)C12—C131.367 (4)
N1—C11.343 (3)C12—H120.9500
N2—C61.287 (3)C13—C141.388 (4)
N2—N31.385 (2)C13—H130.9500
N3—C81.337 (3)C14—C151.404 (3)
N4—C91.284 (3)C14—H140.9500
N5—C111.327 (3)C15—C161.475 (3)
N5—C151.357 (3)C16—C171.492 (3)
N6—C161.287 (3)C17—H17A0.9800
N6—N71.387 (3)C17—H17B0.9800
N7—C181.325 (3)C17—H17C0.9800
N8—C191.274 (3)C18—C191.508 (3)
C1—C21.398 (4)C19—C201.491 (3)
C1—H10.9500C20—H20A0.9800
C2—C31.375 (4)C20—H20B0.9800
C2—H20.9500C20—H20C0.9800
N2—Zn1—N6162.52 (7)C6—C7—H7A109.5
N2—Zn1—O176.10 (7)C6—C7—H7B109.5
N6—Zn1—O1121.37 (7)H7A—C7—H7B109.5
N2—Zn1—O3105.12 (7)C6—C7—H7C109.5
N6—Zn1—O374.17 (6)H7A—C7—H7C109.5
O1—Zn1—O396.43 (6)H7B—C7—H7C109.5
N2—Zn1—N5106.20 (7)O1—C8—N3127.01 (19)
N6—Zn1—N575.07 (7)O1—C8—C9117.25 (19)
O1—Zn1—N593.88 (7)N3—C8—C9115.72 (19)
O3—Zn1—N5148.54 (7)N4—C9—C10124.75 (19)
N2—Zn1—N173.97 (7)N4—C9—C8116.43 (19)
N6—Zn1—N188.55 (7)C10—C9—C8118.82 (19)
O1—Zn1—N1150.07 (7)C9—C10—H10A109.5
O3—Zn1—N190.90 (6)C9—C10—H10B109.5
N5—Zn1—N194.81 (7)H10A—C10—H10B109.5
C8—O1—Zn1111.22 (13)C9—C10—H10C109.5
N4—O2—H2O103.0H10A—C10—H10C109.5
C18—O3—Zn1110.35 (13)H10B—C10—H10C109.5
N8—O4—H4O105.6N5—C11—C12122.6 (2)
H5P—O5—H5O111.3N5—C11—H11118.7
H6O—O6—H6P104.7C12—C11—H11118.7
C5—N1—C1118.2 (2)C13—C12—C11118.7 (2)
C5—N1—Zn1112.02 (14)C13—C12—H12120.7
C1—N1—Zn1129.54 (18)C11—C12—H12120.7
C6—N2—N3119.76 (19)C12—C13—C14119.8 (2)
C6—N2—Zn1123.02 (15)C12—C13—H13120.1
N3—N2—Zn1117.15 (14)C14—C13—H13120.1
C8—N3—N2108.51 (18)C13—C14—C15118.6 (2)
C9—N4—O2112.04 (18)C13—C14—H14120.7
C11—N5—C15119.1 (2)C15—C14—H14120.7
C11—N5—Zn1127.97 (17)N5—C15—C14121.1 (2)
C15—N5—Zn1112.92 (14)N5—C15—C16116.1 (2)
C16—N6—N7120.20 (19)C14—C15—C16122.7 (2)
C16—N6—Zn1119.99 (16)N6—C16—C15114.0 (2)
N7—N6—Zn1117.29 (14)N6—C16—C17125.2 (2)
C18—N7—N6108.84 (18)C15—C16—C17120.8 (2)
C19—N8—O4111.39 (19)C16—C17—H17A109.5
N1—C1—C2122.3 (3)C16—C17—H17B109.5
N1—C1—H1118.9H17A—C17—H17B109.5
C2—C1—H1118.9C16—C17—H17C109.5
C3—C2—C1119.1 (2)H17A—C17—H17C109.5
C3—C2—H2120.5H17B—C17—H17C109.5
C1—C2—H2120.5O3—C18—N7126.8 (2)
C2—C3—C4119.1 (2)O3—C18—C19116.84 (19)
C2—C3—H3120.4N7—C18—C19116.34 (19)
C4—C3—H3120.4N8—C19—C20126.5 (2)
C3—C4—C5118.7 (3)N8—C19—C18114.9 (2)
C3—C4—H4120.6C20—C19—C18118.58 (19)
C5—C4—H4120.6C19—C20—H20A109.5
N1—C5—C4122.5 (2)C19—C20—H20B109.5
N1—C5—C6116.25 (19)H20A—C20—H20B109.5
C4—C5—C6121.2 (2)C19—C20—H20C109.5
N2—C6—C7125.1 (2)H20A—C20—H20C109.5
N2—C6—C5114.6 (2)H20B—C20—H20C109.5
C7—C6—C5120.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2O···N7i0.921.892.801 (3)170
O4—H4O···O5ii0.931.772.675 (3)164
O5—H5P···O30.911.932.811 (3)161
O5—H5O···O60.862.082.889 (3)157
O6—H6O···N4iii0.922.122.934 (3)148
O6—H6P···N8ii0.932.102.971 (3)154

Symmetry codes: (i) x−1, y−1, z; (ii) −x+1, −y+1, −z; (iii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2129).

References

  • Bruker (2004). COLLECT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Comba, P., Kerscher, M., Merz, M., Muller, V., Pritzkow, H., Remenyi, R., Schiek, W. & Xiong, Y. (2002). Chem. Eur. J.8, 5750–5760. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, S. & Nomiya, K. (2003). J. Inorg. Biochem.96, 298–310. [PubMed]
  • Mokhir, A. A., Gumienna-Kontecka, E. S., Wiatek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.
  • Moroz, Yu. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008a). Inorg. Chem.47, 5656–5665. [PubMed]
  • Moroz, Y. S., Sliva, T. Yu., Kulon, K., Kozłowski, H. & Fritsky, I. O. (2008b). Acta Cryst. E64, m353–m354. [PMC free article] [PubMed]
  • Moroz, Y. S., Kalibabchuk, V. A., Gumienna-Kontecka, E., Skopenko, V. V. & Pavlova, S. V. (2009a). Acta Cryst. E65, o2413. [PMC free article] [PubMed]
  • Moroz, Y. S., Konovalova, I. S., Iskenderov, T. S., Pavlova, S. V. & Shishkin, O. V. (2009b). Acta Cryst. E65, o2242. [PMC free article] [PubMed]
  • Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273–276.
  • Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem.65, 287–294.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography