PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o446.
Published online 2010 January 27. doi:  10.1107/S1600536810002163
PMCID: PMC2979936

1-Methyl-1,2,3,4-tetra­hydro­carbolin-2-ium-3-carboxyl­ate

Abstract

The title compound, C13H14N2O2, is a natural product isolated from Cicer arietinum L. (chickpea). The benzene ring and pyrrole rings display planar conformations and the piperidine ring has a half-chair conformation. Inter­molecular C—H(...)π inter­actions between a methyl H atom and the pyrrole ring of an adjacent mol­ecule are present in the crystal structure.

Related literature

For the isolation of the title compound as a natural product, see: Kicha et al. (2003 [triangle]). For the bioactivity of the title compound, see: Adachi et al. (1991 [triangle]); Ogawa & Adachi (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o446-scheme1.jpg

Experimental

Crystal data

  • C13H14N2O2
  • M r = 230.26
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o446-efi1.jpg
  • a = 4.9772 (8) Å
  • b = 14.520 (2) Å
  • c = 15.307 (2) Å
  • V = 1106.3 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 K
  • 0.32 × 0.23 × 0.13 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.971, T max = 0.988
  • 5528 measured reflections
  • 1166 independent reflections
  • 880 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.117
  • S = 1.00
  • 1166 reflections
  • 156 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002163/pb2017sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002163/pb2017Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Natural Science Foundation of China (grant No. 20802092) for financial support.

supplementary crystallographic information

Comment

The title compound is isolated from Cicer arietinum L. (Chickpea), It is a precursor of mutagenic N-nitroso compounds, which show direct-acting mutagenicity on Salmonlla typhimurium TA 100 (Adachi et al., 1991) and may cause eosinophilia-myalgia syndrome (EMS) associated with ingestion of L-tryptophan (Ogawa, 1993).

The benzene ring and pyrrole ring display a planar conformation, and the piperidine ring has a half chair conformation. The molecular packing is stabilized by an intermolecular C–H···π interactions between methyl H atom of piperidine ring pyrrole ring of an adjacent molecule, with a C10–H10···Cg1 separation of 2.69 Å (Table 1, Cg1 is the centroid of C1—C6—C7—C11—N1 pyrrole ring).

Experimental

6 kg of the dried chickpea seeds were crushed and refluxed with 70% ethanol. After condensation in a rotary evaporator, 0.6 L of a syrupy residue was obtained. The residue was suspended in water and extracted by successive partitioning with petroleum ether, EtOAc, and n-butanol saturated with H2O, respectively. The n-butanol portion (60 g) was fractionated over silica gel column eluted with a continuous gradient of CHCl3/MeOH/H2O (15:1:0–6:4:0.8) mixtures of increasing polarity. Fraction eluted with CHCl3/MeOH/H2O (7:3:0.5) was combined and afforded crude title compound (1.13 g). Suitable crystal for determining the X-ray stucture was obtained with a further purification by re-crystallization in MeOH/H2O (1:1). [α] D= 86° (MeOH, 1/4). Spectroscopic analysis: 1H NMR(CD3OD, 500 MHz): δH 4.71 (1H, q, J=7 Hz), 3.96 (1H, dd, J=12, 5.0 Hz), 3.03 (1H, m), 3.45 (1H, m), 7.47 (1H, d, J=8.0 Hz), 7.05 (1H, m), 7.13 (1H, m), 7.34 (1H, d, J=8.0 Hz), 1.75 (3H, d, J=7.0 Hz); 13C NMR (CD3OD, 125 MHz): δc 51.2 (C-10), 59.8 (C-9), 24.3 (C-8), 107.8 (C-7), 127.5 (C-6), 119.2 (C-5), 120.6 (C-4), 123.3 (C-3), 112.3 (C-2), 138.6 (C-1), 131.3 (C-11), 17.1 (C-12), 173.6(C-13).

Refinement

All H atoms were positioned geometrically and treated as riding with aromatic C—H = 0.93 Å, methine C—H = 0.98 Å, methylene C—H = 0.97Å & methyl C—H = 0.96 Å. The H atom isotropic displacement parameters were fixed; Uiso(aromatic H, methine H) = 1.2 times Ueq of the parent atom; Uiso(methylene H, methyl H) = 1.5 times Ueq of the parent atom. Friedel pairs were merged.

Figures

Fig. 1.
Molecular structure of the title compound (I), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

C13H14N2O2F(000) = 488
Mr = 230.26Dx = 1.383 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 666 reflections
a = 4.9772 (8) Åθ = 2.7–18.0°
b = 14.520 (2) ŵ = 0.10 mm1
c = 15.307 (2) ÅT = 296 K
V = 1106.3 (3) Å3Needle, colorless
Z = 40.32 × 0.23 × 0.13 mm

Data collection

Bruker APEXII CCD area-detector diffractometer1166 independent reflections
Radiation source: fine-focus sealed tube880 reflections with I > 2σ(I)
graphiteRint = 0.053
phi and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −5→5
Tmin = 0.971, Tmax = 0.988k = −17→15
5528 measured reflectionsl = −16→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.117w = 1/[σ2(Fo2) + (0.074P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1166 reflectionsΔρmax = 0.22 e Å3
156 parametersΔρmin = −0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.3184 (7)0.56276 (18)0.71317 (15)0.0402 (7)
H10.28780.50450.71040.048*
N2−0.0123 (6)0.67564 (14)0.90152 (14)0.0319 (6)
H2A−0.14860.66680.93930.038*
H2B0.14210.67290.93200.038*
O2−0.0135 (5)0.82385 (13)1.00915 (13)0.0390 (6)
O1−0.2002 (7)0.91384 (15)0.90704 (15)0.0581 (8)
C10.4997 (7)0.6110 (2)0.66226 (19)0.0382 (8)
C20.6786 (8)0.5800 (3)0.59940 (19)0.0476 (9)
H20.68260.51830.58300.057*
C30.8495 (8)0.6429 (3)0.5621 (2)0.0539 (11)
H30.97450.62320.52090.065*
C40.8388 (8)0.7364 (3)0.5849 (2)0.0503 (9)
H40.95230.77820.55740.060*
C50.6633 (8)0.7669 (3)0.6473 (2)0.0441 (9)
H50.65730.82900.66220.053*
C60.4939 (7)0.7043 (2)0.68836 (19)0.0348 (7)
C70.2982 (7)0.7105 (2)0.75634 (17)0.0343 (8)
C80.2132 (7)0.7924 (2)0.8087 (2)0.0369 (8)
H8A0.17590.84370.76990.044*
H8B0.35740.81050.84770.044*
C9−0.0383 (7)0.7696 (2)0.86201 (19)0.0325 (8)
H9−0.19240.76900.82220.039*
C10−0.0145 (7)0.59951 (19)0.83517 (18)0.0345 (8)
H10−0.19020.59890.80620.041*
C110.1945 (8)0.6245 (2)0.76945 (19)0.0348 (8)
C120.0263 (10)0.5078 (2)0.8807 (2)0.0550 (11)
H12A0.19710.50780.90980.082*
H12B0.02190.45910.83830.082*
H12C−0.11420.49860.92280.082*
C13−0.0897 (7)0.8423 (2)0.9318 (2)0.0355 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0454 (19)0.0379 (14)0.0374 (15)−0.0017 (15)0.0046 (15)−0.0056 (11)
N20.0258 (15)0.0372 (13)0.0326 (13)−0.0020 (13)−0.0009 (14)−0.0002 (10)
O20.0340 (14)0.0448 (13)0.0381 (12)0.0015 (11)0.0012 (12)−0.0039 (10)
O10.076 (2)0.0457 (14)0.0523 (14)0.0215 (15)0.0009 (15)0.0018 (12)
C10.035 (2)0.0501 (19)0.0292 (16)0.0034 (19)−0.0021 (17)−0.0026 (13)
C20.048 (2)0.061 (2)0.0336 (17)0.011 (2)0.0031 (19)−0.0081 (17)
C30.038 (2)0.087 (3)0.037 (2)0.005 (2)0.0069 (19)−0.0038 (19)
C40.034 (2)0.079 (3)0.0377 (18)−0.009 (2)0.0057 (19)0.0038 (18)
C50.038 (2)0.056 (2)0.0382 (17)−0.0014 (19)0.0014 (18)0.0012 (15)
C60.0291 (18)0.0470 (18)0.0283 (14)0.0000 (17)−0.0003 (16)−0.0008 (13)
C70.032 (2)0.0406 (17)0.0303 (16)−0.0006 (15)−0.0002 (16)−0.0013 (12)
C80.033 (2)0.0390 (17)0.0383 (16)−0.0018 (15)0.0021 (16)0.0035 (13)
C90.026 (2)0.0388 (17)0.0324 (15)0.0009 (14)0.0005 (15)0.0017 (13)
C100.0354 (19)0.0374 (17)0.0306 (16)−0.0050 (17)0.0013 (17)−0.0018 (12)
C110.0312 (19)0.0412 (18)0.0319 (15)0.0003 (15)−0.0038 (15)−0.0034 (13)
C120.073 (3)0.041 (2)0.051 (2)−0.001 (2)0.009 (2)0.0002 (15)
C130.0307 (19)0.0395 (18)0.0363 (18)−0.0005 (15)0.0043 (15)0.0011 (14)

Geometric parameters (Å, °)

N1—C11.383 (4)C5—C61.390 (5)
N1—C111.388 (4)C5—H50.9300
N1—H10.8600C6—C71.428 (5)
N2—C91.498 (4)C7—C111.367 (4)
N2—C101.501 (3)C7—C81.495 (4)
N2—H2A0.9000C8—C91.530 (5)
N2—H2B0.9000C8—H8A0.9700
O2—C131.272 (4)C8—H8B0.9700
O1—C131.234 (4)C9—C131.523 (4)
C1—C21.386 (5)C9—H90.9800
C1—C61.412 (4)C10—C111.492 (4)
C2—C31.373 (5)C10—C121.516 (4)
C2—H20.9300C10—H100.9800
C3—C41.404 (5)C12—H12A0.9600
C3—H30.9300C12—H12B0.9600
C4—C51.368 (5)C12—H12C0.9600
C4—H40.9300
C1—N1—C11108.2 (3)C7—C8—C9110.2 (3)
C1—N1—H1125.9C7—C8—H8A109.6
C11—N1—H1125.9C9—C8—H8A109.6
C9—N2—C10113.4 (2)C7—C8—H8B109.6
C9—N2—H2A108.9C9—C8—H8B109.6
C10—N2—H2A108.9H8A—C8—H8B108.1
C9—N2—H2B108.9N2—C9—C13111.3 (2)
C10—N2—H2B108.9N2—C9—C8110.0 (3)
H2A—N2—H2B107.7C13—C9—C8111.2 (3)
N1—C1—C2130.2 (3)N2—C9—H9108.1
N1—C1—C6108.2 (3)C13—C9—H9108.1
C2—C1—C6121.4 (3)C8—C9—H9108.1
C3—C2—C1118.1 (3)C11—C10—N2105.8 (2)
C3—C2—H2121.0C11—C10—C12115.5 (3)
C1—C2—H2121.0N2—C10—C12109.5 (2)
C2—C3—C4121.1 (3)C11—C10—H10108.6
C2—C3—H3119.5N2—C10—H10108.6
C4—C3—H3119.5C12—C10—H10108.6
C5—C4—C3120.8 (4)C7—C11—N1109.4 (3)
C5—C4—H4119.6C7—C11—C10125.8 (3)
C3—C4—H4119.6N1—C11—C10124.9 (3)
C4—C5—C6119.4 (3)C10—C12—H12A109.5
C4—C5—H5120.3C10—C12—H12B109.5
C6—C5—H5120.3H12A—C12—H12B109.5
C5—C6—C1119.1 (3)C10—C12—H12C109.5
C5—C6—C7134.5 (3)H12A—C12—H12C109.5
C1—C6—C7106.3 (3)H12B—C12—H12C109.5
C11—C7—C6107.8 (3)O1—C13—O2126.5 (3)
C11—C7—C8122.8 (3)O1—C13—C9116.3 (3)
C6—C7—C8129.4 (3)O2—C13—C9117.2 (3)
C11—N1—C1—C2177.1 (3)C10—N2—C9—C8−67.4 (3)
C11—N1—C1—C61.3 (4)C7—C8—C9—N242.5 (3)
N1—C1—C2—C3−176.0 (3)C7—C8—C9—C13166.2 (3)
C6—C1—C2—C3−0.7 (5)C9—N2—C10—C1152.2 (3)
C1—C2—C3—C4−1.8 (5)C9—N2—C10—C12177.2 (3)
C2—C3—C4—C52.2 (6)C6—C7—C11—N10.7 (4)
C3—C4—C5—C60.0 (6)C8—C7—C11—N1−178.1 (3)
C4—C5—C6—C1−2.4 (5)C6—C7—C11—C10179.4 (3)
C4—C5—C6—C7177.5 (4)C8—C7—C11—C100.6 (5)
N1—C1—C6—C5179.0 (3)C1—N1—C11—C7−1.3 (4)
C2—C1—C6—C52.8 (5)C1—N1—C11—C10−180.0 (3)
N1—C1—C6—C7−0.9 (3)N2—C10—C11—C7−19.6 (4)
C2—C1—C6—C7−177.1 (3)C12—C10—C11—C7−140.9 (4)
C5—C6—C7—C11−179.8 (4)N2—C10—C11—N1158.9 (3)
C1—C6—C7—C110.1 (4)C12—C10—C11—N137.6 (4)
C5—C6—C7—C8−1.1 (6)N2—C9—C13—O1−156.8 (3)
C1—C6—C7—C8178.8 (3)C8—C9—C13—O180.3 (4)
C11—C7—C8—C9−12.0 (4)N2—C9—C13—O223.7 (4)
C6—C7—C8—C9169.5 (3)C8—C9—C13—O2−99.2 (3)
C10—N2—C9—C13168.9 (3)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C1/C6/C7/C11/N1 pyrrole ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1i0.982.693.644 (3)165

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2017).

References

  • Adachi, J., Mizoi, Y., Naito, T., Ogawa, Y., Uetani, Y. & Ninomiya, I. (1991). J. Nutr.121, 646–652. [PubMed]
  • Bruker (2000). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kicha, A. A., Ivanchina, N. V., Kalinovsky, A. I., Dmitrenok, P. S. & Stonik, V. A. (2003). Tetrahedron Lett.44, 1935–1937.
  • Ogawa, Y. & Adachi, J. (1993). Arch. Toxicol 67, 290-293. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography