PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m166.
Published online 2010 January 16. doi:  10.1107/S160053681000022X
PMCID: PMC2979935

Bis(trimethyl­phenyl­ammonium) tetra­bromidocuprate(II)

Abstract

The crystal structure of the title compound, (C9H14N)2[CuBr4], consists of two quarternary ammonium cations and a tetra­hedral cuprate anions. Weak C—H(...)Br hydrogen bonding is present between the cation and anion in the crystal structure.

Related literature

For bis­(4-dimethyl­amino­pyridinium) tetra­bromidocuprate, see: Lo & Ng (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m166-scheme1.jpg

Experimental

Crystal data

  • (C9H14N)2[CuBr4]
  • M r = 655.60
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m166-efi1.jpg
  • a = 16.0146 (11) Å
  • b = 9.8007 (7) Å
  • c = 31.363 (2) Å
  • β = 94.459 (1)°
  • V = 4907.7 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 7.41 mm−1
  • T = 295 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.215, T max = 0.525
  • 25029 measured reflections
  • 4318 independent reflections
  • 2994 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.127
  • S = 1.28
  • 4318 reflections
  • 202 parameters
  • 27 restraints
  • H-atom parameters constrained
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.80 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681000022X/xu2711sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000022X/xu2711Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Malaya (RG020/09AFR) for supporting this study.

supplementary crystallographic information

Experimental

Copper sulfate pentahydrate (0.52 g, 2 mmol) and trimethylphenylammonium tribromide (0.78 g, 2 mmol) were heated in ethanol (50 ml) for 2 h. After filtering of the reaction mixture, light blue crystals were obtained upon slow evaporation of the greenish-blue filtrate.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

The phenyl rings were refined as rigid hexagons of 1.39 ° sides. One trimethylamino group shows somewhat large temperature factors. For investigate possible disorder, all carbon-nitrogen distances were restrained to within 0.01 Å of each other, as were the carbon–carbon distances. The six carbon atoms were restrained to lie within a circle. The temperature factors of the primed atoms were set to those of the unprimed ones. However, this disorder model had short H···H contacts, and the refinement was abandoned. The group was refined without disorder but subject to the same distance restraints. Also, the anisotropic temperature factors were restrained to be nearly isotropic.

The suggested weighting scheme included a large second parameter. This was arbitrarily set at 5.00; this gave a satisfactory Goodness-of-Fit.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of bis(trimethylphenylammonium) tetrabromidocuprate at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

(C9H14N)2[CuBr4]F(000) = 2552
Mr = 655.60Dx = 1.775 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4958 reflections
a = 16.0146 (11) Åθ = 2.4–22.3°
b = 9.8007 (7) ŵ = 7.41 mm1
c = 31.363 (2) ÅT = 295 K
β = 94.459 (1)°Prism, blue
V = 4907.7 (6) Å30.30 × 0.20 × 0.10 mm
Z = 8

Data collection

Bruker SMART APEX diffractometer4318 independent reflections
Radiation source: fine-focus sealed tube2994 reflections with I > 2σ(I)
graphiteRint = 0.060
ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −18→18
Tmin = 0.215, Tmax = 0.525k = −11→11
25029 measured reflectionsl = −37→37

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.28w = 1/[σ2(Fo2) + (0.05P)2 + 5.00] where P = (Fo2 + 2Fc2)/3
4318 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.61 e Å3
27 restraintsΔρmin = −0.80 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.55154 (4)0.30390 (9)0.16560 (3)0.0741 (3)
Br20.79401 (4)0.33759 (8)0.18242 (3)0.0617 (2)
Br30.69988 (5)0.09626 (8)0.09258 (2)0.0637 (2)
Br40.67593 (5)0.49013 (7)0.07793 (3)0.0639 (2)
Cu10.67856 (5)0.30817 (8)0.12941 (3)0.0521 (3)
N10.5591 (4)0.7361 (6)0.45281 (19)0.0704 (18)
N20.7051 (3)0.3098 (5)0.31014 (15)0.0434 (13)
C10.5386 (8)0.7895 (12)0.4099 (3)0.167 (5)
H1A0.52690.88530.41150.250*
H1B0.49020.74290.39710.250*
H1C0.58510.77530.39290.250*
C20.6406 (5)0.7921 (9)0.4693 (3)0.114 (4)
H2A0.63800.89000.46910.171*
H2B0.68320.76210.45160.171*
H2C0.65360.76080.49810.171*
C30.5684 (6)0.5866 (9)0.4500 (3)0.123 (4)
H3A0.54130.55480.42350.184*
H3B0.54320.54430.47340.184*
H3C0.62680.56360.45130.184*
C40.4924 (3)0.7708 (5)0.47999 (14)0.0524 (17)
C50.4129 (3)0.8104 (5)0.46368 (13)0.062 (2)
H50.40140.82060.43430.075*
C60.3506 (2)0.8347 (5)0.49123 (19)0.080 (3)
H60.29740.86120.48030.096*
C70.3679 (3)0.8195 (6)0.53509 (18)0.082 (3)
H70.32620.83570.55350.098*
C80.4474 (4)0.7799 (7)0.55141 (12)0.106 (4)
H80.45890.76970.58080.127*
C90.5097 (3)0.7556 (6)0.52385 (15)0.089 (3)
H90.56290.72910.53480.107*
C100.6678 (5)0.4474 (7)0.3025 (3)0.087 (3)
H10A0.69290.51040.32320.130*
H10B0.60850.44310.30520.130*
H10C0.67780.47760.27430.130*
C110.6610 (5)0.2155 (8)0.2782 (2)0.072 (2)
H11A0.67830.23510.25020.108*
H11B0.60160.22820.27830.108*
H11C0.67490.12270.28560.108*
C120.6895 (5)0.2659 (9)0.3546 (2)0.075 (2)
H12A0.72110.32260.37490.112*
H12B0.70640.17260.35870.112*
H12C0.63090.27440.35860.112*
C130.79634 (19)0.3098 (4)0.30638 (14)0.0436 (15)
C140.8423 (3)0.4295 (4)0.30389 (15)0.0606 (19)
H140.81540.51350.30430.073*
C150.9283 (3)0.4235 (5)0.30075 (16)0.080 (3)
H150.95900.50350.29910.096*
C160.9684 (2)0.2978 (7)0.30009 (17)0.083 (3)
H161.02590.29380.29800.099*
C170.9225 (3)0.1781 (5)0.30258 (18)0.079 (3)
H170.94930.09400.30210.095*
C180.8364 (3)0.1841 (4)0.30573 (16)0.062 (2)
H180.80570.10400.30740.074*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0404 (4)0.1076 (7)0.0762 (6)−0.0036 (4)0.0179 (4)−0.0069 (5)
Br20.0425 (4)0.0797 (5)0.0608 (5)0.0046 (4)−0.0100 (3)−0.0093 (4)
Br30.0839 (6)0.0540 (5)0.0539 (5)0.0020 (4)0.0094 (4)−0.0078 (4)
Br40.0684 (5)0.0573 (5)0.0654 (5)−0.0038 (4)0.0005 (4)0.0146 (4)
Cu10.0433 (5)0.0610 (5)0.0518 (5)0.0006 (4)0.0032 (4)0.0000 (4)
N10.062 (4)0.095 (5)0.057 (4)−0.014 (4)0.021 (3)−0.011 (4)
N20.044 (3)0.047 (3)0.040 (3)0.000 (2)0.008 (2)0.003 (3)
C10.167 (9)0.222 (10)0.120 (8)0.019 (8)0.064 (7)0.013 (8)
C20.089 (6)0.127 (7)0.133 (7)−0.029 (5)0.049 (6)−0.037 (6)
C30.118 (7)0.108 (7)0.148 (8)−0.010 (6)0.050 (6)−0.058 (6)
C40.054 (4)0.054 (4)0.050 (5)−0.001 (3)0.006 (4)−0.003 (3)
C50.062 (5)0.073 (5)0.050 (5)−0.006 (4)−0.008 (4)0.007 (4)
C60.049 (5)0.083 (6)0.109 (8)0.014 (4)0.005 (5)0.010 (5)
C70.070 (6)0.092 (6)0.088 (7)0.022 (5)0.032 (5)0.009 (5)
C80.112 (8)0.160 (10)0.047 (5)0.059 (7)0.019 (5)0.017 (6)
C90.069 (5)0.149 (8)0.049 (5)0.043 (6)0.000 (4)0.002 (5)
C100.070 (5)0.070 (6)0.120 (8)0.008 (4)0.002 (5)0.021 (5)
C110.055 (5)0.095 (6)0.065 (5)−0.013 (4)−0.004 (4)−0.014 (5)
C120.058 (5)0.119 (7)0.050 (5)−0.003 (5)0.022 (4)0.010 (5)
C130.044 (4)0.054 (4)0.034 (4)−0.007 (3)0.004 (3)0.002 (3)
C140.070 (5)0.056 (5)0.056 (5)−0.016 (4)0.012 (4)−0.003 (4)
C150.066 (6)0.115 (8)0.061 (5)−0.045 (5)0.016 (4)0.000 (5)
C160.048 (5)0.144 (9)0.057 (5)−0.011 (6)0.011 (4)0.004 (6)
C170.052 (5)0.108 (7)0.079 (6)0.016 (5)0.012 (4)0.004 (5)
C180.047 (4)0.066 (5)0.073 (5)−0.006 (4)0.009 (4)0.007 (4)

Geometric parameters (Å, °)

Br1—Cu12.4055 (11)C6—H60.9300
Br2—Cu12.4057 (11)C7—C81.3900
Br3—Cu12.4136 (11)C7—H70.9300
Br4—Cu12.4039 (11)C8—C91.3900
N1—C41.457 (7)C8—H80.9300
N1—C11.457 (8)C9—H90.9300
N1—C21.472 (8)C10—H10A0.9600
N1—C31.476 (8)C10—H10B0.9600
N2—C131.475 (6)C10—H10C0.9600
N2—C101.487 (6)C11—H11A0.9600
N2—C121.498 (6)C11—H11B0.9600
N2—C111.499 (6)C11—H11C0.9600
C1—H1A0.9600C12—H12A0.9600
C1—H1B0.9600C12—H12B0.9600
C1—H1C0.9600C12—H12C0.9600
C2—H2A0.9600C13—C141.3900
C2—H2B0.9600C13—C181.3900
C2—H2C0.9600C14—C151.3900
C3—H3A0.9600C14—H140.9300
C3—H3B0.9600C15—C161.3900
C3—H3C0.9600C15—H150.9300
C4—C51.3900C16—C171.3900
C4—C91.3900C16—H160.9300
C5—C61.3900C17—C181.3900
C5—H50.9300C17—H170.9300
C6—C71.3900C18—H180.9300
Br4—Cu1—Br2110.35 (4)C6—C7—C8120.0
Br4—Cu1—Br1111.01 (4)C6—C7—H7120.0
Br2—Cu1—Br1107.98 (4)C8—C7—H7120.0
Br4—Cu1—Br3108.21 (4)C9—C8—C7120.0
Br2—Cu1—Br3107.71 (4)C9—C8—H8120.0
Br1—Cu1—Br3111.54 (4)C7—C8—H8120.0
C4—N1—C1109.5 (7)C8—C9—C4120.0
C4—N1—C2112.2 (6)C8—C9—H9120.0
C1—N1—C2108.7 (6)C4—C9—H9120.0
C4—N1—C3110.4 (6)N2—C10—H10A109.5
C1—N1—C3108.6 (6)N2—C10—H10B109.5
C2—N1—C3107.4 (5)H10A—C10—H10B109.5
C13—N2—C10112.1 (5)N2—C10—H10C109.5
C13—N2—C12108.2 (5)H10A—C10—H10C109.5
C10—N2—C12108.4 (6)H10B—C10—H10C109.5
C13—N2—C11111.4 (4)N2—C11—H11A109.5
C10—N2—C11106.8 (6)N2—C11—H11B109.5
C12—N2—C11109.9 (5)H11A—C11—H11B109.5
N1—C1—H1A109.5N2—C11—H11C109.5
N1—C1—H1B109.5H11A—C11—H11C109.5
H1A—C1—H1B109.5H11B—C11—H11C109.5
N1—C1—H1C109.5N2—C12—H12A109.5
H1A—C1—H1C109.5N2—C12—H12B109.5
H1B—C1—H1C109.5H12A—C12—H12B109.5
N1—C2—H2A109.5N2—C12—H12C109.5
N1—C2—H2B109.5H12A—C12—H12C109.5
H2A—C2—H2B109.5H12B—C12—H12C109.5
N1—C2—H2C109.5C14—C13—C18120.0
H2A—C2—H2C109.5C14—C13—N2122.4 (3)
H2B—C2—H2C109.5C18—C13—N2117.6 (3)
N1—C3—H3A109.5C15—C14—C13120.0
N1—C3—H3B109.5C15—C14—H14120.0
H3A—C3—H3B109.5C13—C14—H14120.0
N1—C3—H3C109.5C14—C15—C16120.0
H3A—C3—H3C109.5C14—C15—H15120.0
H3B—C3—H3C109.5C16—C15—H15120.0
C5—C4—C9120.0C17—C16—C15120.0
C5—C4—N1122.8 (4)C17—C16—H16120.0
C9—C4—N1117.1 (4)C15—C16—H16120.0
C6—C5—C4120.0C16—C17—C18120.0
C6—C5—H5120.0C16—C17—H17120.0
C4—C5—H5120.0C18—C17—H17120.0
C5—C6—C7120.0C17—C18—C13120.0
C5—C6—H6120.0C17—C18—H18120.0
C7—C6—H6120.0C13—C18—H18120.0
C1—N1—C4—C517.7 (7)C10—N2—C13—C1411.0 (7)
C2—N1—C4—C5138.5 (5)C12—N2—C13—C14−108.5 (5)
C3—N1—C4—C5−101.8 (6)C11—N2—C13—C14130.6 (5)
C1—N1—C4—C9−165.8 (5)C10—N2—C13—C18−169.6 (5)
C2—N1—C4—C9−45.1 (6)C12—N2—C13—C1871.0 (6)
C3—N1—C4—C974.7 (6)C11—N2—C13—C18−50.0 (6)
C9—C4—C5—C60.0C18—C13—C14—C150.0
N1—C4—C5—C6176.4 (5)N2—C13—C14—C15179.5 (4)
C4—C5—C6—C70.0C13—C14—C15—C160.0
C5—C6—C7—C80.0C14—C15—C16—C170.0
C6—C7—C8—C90.0C15—C16—C17—C180.0
C7—C8—C9—C40.0C16—C17—C18—C130.0
C5—C4—C9—C80.0C14—C13—C18—C170.0
N1—C4—C9—C8−176.6 (5)N2—C13—C18—C17−179.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2B···Br3i0.962.913.840 (9)164

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2711).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m972. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography