PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o481.
Published online 2010 January 30. doi:  10.1107/S1600536810002795
PMCID: PMC2979932

4-Hydr­oxy-3-nitro­phenyl penta­noate

Abstract

In the title compound, C11H13NO5, an intra­molecular O—H(...)O hydrogen bond is formed between the hydr­oxy and the nitro groups, which results in the formation of a six-membered ring. The valer­oxy group shows a torsioned conformation, and connects to the aryl ring with a C—C—O—C torsion angle of 102.34 (1)°.

Related literature

For general background to the use of phenolic esters as inter­mediates in organic synthesis, see: Trollsås et al. (1996 [triangle]); Svensson et al. (1998 [triangle]); Atkinson et al. (2005 [triangle]); Hu et al. (2001 [triangle]). For a related structure, see: Ji & Li (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o481-scheme1.jpg

Experimental

Crystal data

  • C11H13NO5
  • M r = 239.22
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o481-efi1.jpg
  • a = 5.3006 (14) Å
  • b = 10.435 (2) Å
  • c = 11.365 (3) Å
  • α = 67.340 (12)°
  • β = 81.074 (17)°
  • γ = 77.114 (16)°
  • V = 563.8 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 113 K
  • 0.18 × 0.06 × 0.06 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2007 [triangle]) T min = 0.980, T max = 0.993
  • 5175 measured reflections
  • 2639 independent reflections
  • 1972 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.100
  • S = 1.00
  • 2639 reflections
  • 158 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2007 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810002795/bg2323sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002795/bg2323Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In organic synthesis, phenolic esters are useful intermediates (Trollsås et al., 1996; Svensson et al., 1998; Atkinson et al., 2005; Hu et al., 2001). We have synthesized the title compound according to the method in reference (Ji et al., 2006), and we report herein its crystal structure.

In the molecule of the title compound (Fig. 1) bond lengths (Allen et al., 1987) and angles are within normal ranges. An intramolecular O—H···O is formed between the hydroxy and the nitro groups, which results in the formation of a planar six-membered ring, coplanar with the aryl ring. The valeroxy group shows a torsioned conformation, the dihedral angle between aromatic ring and C6–O4–C7 being 99.64°. In addition valeroxy group is connected to the aromatic ring with a torsion angle (C5–C6–O4–C7) of 102.34 (1)°. A short O2···O2[1-x,1-y,2-z] = 2.855 (1)Å contact appears in the packing.

Experimental

For the preparation of the title compound, 2-nitrohydroquinone pentanoate (325 mg, 1.0 mmol) was dissolved in chloroform (20 ml). At 273–278 K, anhydrous AlCl3 (200.2 mg, 1.5 mmol) was added to this solution, the reaction was stirred at room temperature for 1 h, and then hydrochloric acid (5 ml, 10%) was added. The reaction mixture was extracted with chloroform and dried with anhydrous sodium sulfate. After concentration, the residue was separated by flash column chromatography and purified by recrystallization from chloroform (yield; 167 mg, 70%, m.p. 310 K). Spectroscopic analysis: IR (KBr, ν, cm-1): 3267, 3096, 2960, 2937, 1762, 1539, 1238, 1138, 1099, 943, 840. Analysis required for C11H13NO5: C 55.23; H 5.48; N 5.85%. Found: C 55.32; H 5.54; N 5.79%.

Refinement

C-H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively; and constrained to ride on their parent atoms. H3 coordinates were was further refined. In all cases Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H and x = 1.5 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as a dashed line.

Crystal data

C11H13NO5Z = 2
Mr = 239.22F(000) = 252
Triclinic, P1Dx = 1.409 Mg m3
Hall symbol: -P 1Melting point: 310 K
a = 5.3006 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.435 (2) ÅCell parameters from 1965 reflections
c = 11.365 (3) Åθ = 2.1–27.9°
α = 67.340 (12)°µ = 0.11 mm1
β = 81.074 (17)°T = 113 K
γ = 77.114 (16)°Prism, colorless
V = 563.8 (2) Å30.18 × 0.06 × 0.06 mm

Data collection

Rigaku Saturn CCD area-detector diffractometer2639 independent reflections
Radiation source: fine-focus sealed tube1972 reflections with I > 2σ(I)
graphiteRint = 0.023
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 2.2°
ω and [var phi] scansh = −6→6
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2007)k = −13→13
Tmin = 0.980, Tmax = 0.993l = −14→14
5175 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0553P)2] where P = (Fo2 + 2Fc2)/3
2639 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.44132 (16)0.16466 (9)1.06926 (8)0.0260 (2)
O20.57276 (18)0.35065 (8)1.06023 (9)0.0294 (2)
O30.97659 (17)0.43498 (8)0.91208 (9)0.0266 (2)
H30.849 (3)0.4414 (15)0.9691 (14)0.040*
O41.05538 (15)−0.03140 (8)0.78112 (8)0.0208 (2)
O50.75270 (16)0.06969 (8)0.63771 (8)0.0238 (2)
N10.59085 (19)0.24914 (10)1.02548 (9)0.0206 (2)
C10.8163 (2)0.11536 (11)0.89438 (11)0.0183 (3)
H10.69250.05440.92830.022*
C20.7982 (2)0.23078 (11)0.93060 (10)0.0175 (3)
C30.9768 (2)0.32268 (11)0.88102 (11)0.0194 (3)
C41.1752 (2)0.29541 (12)0.79260 (11)0.0218 (3)
H41.29820.35670.75660.026*
C51.1953 (2)0.18137 (12)0.75690 (11)0.0209 (3)
H51.33150.16410.69690.025*
C61.0158 (2)0.09177 (11)0.80900 (11)0.0181 (3)
C70.9099 (2)−0.03100 (12)0.69151 (10)0.0178 (3)
C80.9818 (2)−0.16744 (12)0.66970 (11)0.0197 (3)
H8A1.0362−0.24410.75060.024*
H8B1.1326−0.16200.60560.024*
C90.7641 (2)−0.20491 (11)0.62381 (11)0.0210 (3)
H9A0.6992−0.12550.54670.025*
H9B0.6189−0.21960.69110.025*
C100.8556 (2)−0.33818 (12)0.59220 (12)0.0238 (3)
H10A0.9660−0.31540.51080.029*
H10B0.9636−0.40930.66010.029*
C110.6337 (3)−0.40135 (13)0.58021 (14)0.0332 (3)
H11A0.5280−0.42820.66180.050*
H11B0.7039−0.48510.55810.050*
H11C0.5260−0.33160.51300.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0254 (5)0.0286 (5)0.0263 (5)−0.0112 (4)0.0048 (4)−0.0114 (4)
O20.0387 (6)0.0213 (4)0.0310 (5)−0.0050 (4)0.0060 (4)−0.0161 (4)
O30.0329 (5)0.0241 (5)0.0303 (5)−0.0113 (4)0.0036 (4)−0.0170 (4)
O40.0237 (5)0.0196 (4)0.0229 (5)0.0002 (3)−0.0061 (3)−0.0125 (3)
O50.0254 (5)0.0229 (4)0.0236 (5)0.0022 (4)−0.0063 (4)−0.0108 (3)
N10.0229 (6)0.0190 (5)0.0191 (5)−0.0016 (4)−0.0013 (4)−0.0076 (4)
C10.0187 (6)0.0177 (5)0.0192 (6)−0.0047 (4)−0.0034 (5)−0.0058 (4)
C20.0185 (6)0.0181 (5)0.0154 (6)−0.0012 (4)−0.0015 (4)−0.0066 (4)
C30.0239 (6)0.0170 (5)0.0187 (6)−0.0027 (5)−0.0049 (5)−0.0074 (4)
C40.0214 (6)0.0217 (6)0.0224 (6)−0.0069 (5)−0.0014 (5)−0.0067 (5)
C50.0201 (6)0.0232 (6)0.0181 (6)−0.0013 (5)−0.0011 (5)−0.0077 (5)
C60.0221 (6)0.0166 (5)0.0174 (6)0.0004 (4)−0.0068 (5)−0.0083 (4)
C70.0172 (6)0.0234 (6)0.0141 (6)−0.0052 (5)0.0017 (4)−0.0085 (4)
C80.0206 (6)0.0211 (6)0.0199 (6)−0.0015 (5)−0.0023 (5)−0.0111 (5)
C90.0208 (6)0.0232 (6)0.0216 (6)−0.0042 (5)−0.0015 (5)−0.0111 (5)
C100.0269 (7)0.0218 (6)0.0258 (7)−0.0041 (5)−0.0040 (5)−0.0115 (5)
C110.0348 (8)0.0286 (7)0.0441 (9)−0.0095 (6)−0.0049 (6)−0.0189 (6)

Geometric parameters (Å, °)

O1—N11.2264 (12)C5—C61.3878 (16)
O2—N11.2461 (12)C5—H50.9500
O3—C31.3476 (13)C7—C81.4948 (15)
O3—H30.872 (14)C8—C91.5171 (16)
O4—C71.3678 (15)C8—H8A0.9900
O4—C61.4032 (12)C8—H8B0.9900
O5—C71.2019 (14)C9—C101.5258 (14)
N1—C21.4508 (14)C9—H9A0.9900
C1—C61.3675 (15)C9—H9B0.9900
C1—C21.3956 (15)C10—C111.5170 (18)
C1—H10.9500C10—H10A0.9900
C2—C31.3987 (16)C10—H10B0.9900
C3—C41.3984 (16)C11—H11A0.9800
C4—C51.3762 (16)C11—H11B0.9800
C4—H40.9500C11—H11C0.9800
C3—O3—H3109.7 (10)O4—C7—C8110.77 (10)
C7—O4—C6117.46 (9)C7—C8—C9113.82 (9)
O1—N1—O2122.30 (9)C7—C8—H8A108.8
O1—N1—C2119.42 (9)C9—C8—H8A108.8
O2—N1—C2118.27 (9)C7—C8—H8B108.8
C6—C1—C2118.66 (10)C9—C8—H8B108.8
C6—C1—H1120.7H8A—C8—H8B107.7
C2—C1—H1120.7C8—C9—C10111.43 (9)
C1—C2—C3121.70 (9)C8—C9—H9A109.3
C1—C2—N1117.19 (10)C10—C9—H9A109.3
C3—C2—N1121.08 (10)C8—C9—H9B109.3
O3—C3—C4116.78 (10)C10—C9—H9B109.3
O3—C3—C2125.67 (10)H9A—C9—H9B108.0
C4—C3—C2117.55 (10)C11—C10—C9113.11 (10)
C5—C4—C3121.13 (11)C11—C10—H10A109.0
C5—C4—H4119.4C9—C10—H10A109.0
C3—C4—H4119.4C11—C10—H10B109.0
C4—C5—C6119.68 (10)C9—C10—H10B109.0
C4—C5—H5120.2H10A—C10—H10B107.8
C6—C5—H5120.2C10—C11—H11A109.5
C1—C6—C5121.27 (10)C10—C11—H11B109.5
C1—C6—O4119.95 (10)H11A—C11—H11B109.5
C5—C6—O4118.54 (9)C10—C11—H11C109.5
O5—C7—O4122.35 (10)H11A—C11—H11C109.5
O5—C7—C8126.85 (12)H11B—C11—H11C109.5
C6—C1—C2—C30.58 (18)C2—C1—C6—C5−1.16 (18)
C6—C1—C2—N1−177.40 (10)C2—C1—C6—O4173.22 (10)
O1—N1—C2—C1−0.25 (16)C4—C5—C6—C10.80 (19)
O2—N1—C2—C1179.25 (11)C4—C5—C6—O4−173.66 (11)
O1—N1—C2—C3−178.24 (11)C7—O4—C6—C183.13 (13)
O2—N1—C2—C31.26 (17)C7—O4—C6—C5−102.34 (13)
C1—C2—C3—O3−178.86 (12)C6—O4—C7—O5−0.14 (15)
N1—C2—C3—O3−0.96 (19)C6—O4—C7—C8177.99 (8)
C1—C2—C3—C40.34 (18)O5—C7—C8—C9−28.67 (16)
N1—C2—C3—C4178.24 (11)O4—C7—C8—C9153.30 (9)
O3—C3—C4—C5178.56 (11)C7—C8—C9—C10175.07 (9)
C2—C3—C4—C5−0.72 (18)C8—C9—C10—C11164.72 (10)
C3—C4—C5—C60.17 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O20.872 (14)1.871 (14)2.6022 (13)140.2 (13)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2323).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Atkinson, P. J., Bromidge, S. M., Duxon, M. S., Gaster, L. M., Hadley, M. S., Hammond, B., Johnson, C. N., Middlemiss, D. N., North, S. E., Price, G. W., Rami, H. K., Riley, G. J., Scott, C. M., Shaw, T. E., Starr, K. R., Stemp, G., Thewlis, K. M., Thomas, D. R., Thompson, M., Vong, A. K. K. & Watson, J. M. (2005). Bioorg. Med. Chem. Lett.15, 737–741. [PubMed]
  • Hu, B., Ellingboe, J., Gunawan, I., Han, S., Largis, E., Li, Z., Malamas, M., Mulvey, R., Oliphant, A., Sum, F.-W., Tillett, J. & Wong, V. (2001). Bioorg. Med. Chem. Lett.11, 757–760. [PubMed]
  • Ji, X. & Li, C. (2006). Synthesis, pp. 2478–2482.
  • Rigaku/MSC (2007). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Svensson, M., Helgee, B., Skarp, K. & Andersson, G. (1998). J. Mater. Chem.8, 353–362.
  • Trollsås, M., Orrenius, C., Sahlén, F., Gedde, U. W., Norin, T., Hult, A., Hermann, D., Rudquist, P., Komitov, L., Lagerwall, S. T. & Lindström, J. (1996). J. Am. Chem. Soc.118, 8542–8548.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography