PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o341.
Published online 2010 January 13. doi:  10.1107/S1600536810000516
PMCID: PMC2979928

1,2-Dihydr­oxy-2-(3-methyl­but-2-en­yl)-3-oxo-2,3-dihydro-1H-indene-1-carboxylic acid monohydrate

Abstract

The title compound, C15H16O5·H2O, is an inter­mediate of the Hooker oxidation reaction, used for the synthesis of 2-hydr­oxy-3-(2-methyl­prop-1-en­yl)naphthalene-1,4-dione (nor-lapachol). The packing in the crystal structure is arranged by an O—H(...)O hydrogen-bonded network along the [100] and [010] directions. Each organic mol­ecule is linked to four other mol­ecules via the hydr­oxy groups. The water solvent mol­ecule is connected to carboxylic acid groups by three hydrogen bonds.

Related literature

For a related structure, see Cunningham et al. (1999 [triangle]). For information on the mechanism of the Hooker oxidation reaction, see: Hooker (1936 [triangle]); Hooker & Steyermark (1936 [triangle]); Fieser & Fieser, (1948 [triangle]); Fieser & Bader (1951 [triangle]); Fieser et al. (1936 [triangle]); Lee et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o341-scheme1.jpg

Experimental

Crystal data

  • C15H16O5·H2O
  • M r = 294.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o341-efi1.jpg
  • a = 9.5514 (7) Å
  • b = 5.7762 (5) Å
  • c = 13.1324 (9) Å
  • β = 92.126 (12)°
  • V = 724.03 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 298 K
  • 0.21 × 0.15 × 0.09 mm

Data collection

  • Enraf–Nonius FR590 diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.981, T max = 0.991
  • 18985 measured reflections
  • 1827 independent reflections
  • 1490 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.093
  • S = 1.06
  • 1827 reflections
  • 195 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: COLLECT (Nonius, 2004 [triangle]); cell refinement: DIRAX/LSQ (Duisenberg, 1992 [triangle]); data reduction: EVALCCD (Duisenberg et al., 2003 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae, 2006 [triangle]) and ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810000516/lh2966sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000516/lh2966Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Brazilian agencies FAPEAL, FAPERJ, CAPES and CNPq.

supplementary crystallographic information

Comment

For many years investigations on the Hooker intermediate were object of preparation of nor-lapachol (Fieser et al., 1936), principally due to the different oxidation mechanism (Lee et al., 1995) in which the substrate 2-hydroxy-3-(3-methylbut-2-enyl)naphthalene-1,4-dione) (lapachol) undergoes rearrangement into nor-lapachol (Fieser et al., 1951). This Hooker oxidation reaction is applicable to a large number of hydroxynaphthoquinones with side chains in the quinone ring (Hooker, 1936; Hooker & Steyermark, 1936).

Although spectroscopic data (NMR and elemental analysis) has indicated (Fieser et al., 1948) the likely structure of the intermediate, X-ray diffraction study has never been performed. We report herein the synthesis and the crystal structure of the title compound, (I). An ORTEP-3 (Farrugia, 1997) drawing of (I) is shown in Fig. 1, and selected geometric parameters are presented in Table 1. The five-membered ring adopts an envelope conformation [q2 = 0.260 (2) Å e [var phi]2 = -147.3 (5)°]. The ring is stretched and this is reflected in the larger bond length of C1—C2, like in the oxoindane ester methyl trans-2-(trans-4-tert-butylcyclohexyl)methyl-2,3-dihydroxy- 1-oxoindan-3-carboxylate (Cunningham et al., 1999). The crystal packing is stabilized by five hydrogen bonds (Table 1) forming a hydrogen-bonded network along the [010] and [100] directions (Figure 2).

Experimental

Lapachol (10.0 g, 41.3 mmol) in THF (70 ml) was added to a solution of Na2CO3 (4.8 g, 45.3 mmol) in water (100 ml). The mixture was refluxed under N2 and when the temperature reached 316K , H2O2 (32 ml) was added. The reaction mixture remained under reflux for one hour and after this period it was cooled to 283K. Then conc. HCl was added until appearance of a white precipitate, which was filtered under vaccum [yield; 81%, 493-494K, lit. (Fieser et al., 1951): 492-493K].

Refinement

The hydrogen atoms of the water were placed at calculated positions and other H atoms C—H = 0.93–0.97 Å and O—H (hydroxyl group) = 0.82Å were placed into the calculated idealized positions. All H atoms were refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq (Csp2) or 1.5Ueq (Csp3) and (O—H)] using a riding model. Due to the absence of anomalous dispersion the The Flack parameter was not refined.

Figures

Fig. 1.
: The molecular structure of (I) with displacement ellipsoids are drawn at the 50% probability level. A hydrogen bond is shown as a dashed line.
Fig. 2.
: A packing diagram of (I) (Macrae et al., 2006). Hydrogen bonds are shown as dotted lines.

Crystal data

C15H16O5·H2OF(000) = 312
Mr = 294.29Dx = 1.357 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 18985 reflections
a = 9.5514 (7) Åθ = 3.1–27.5°
b = 5.7762 (5) ŵ = 0.11 mm1
c = 13.1324 (9) ÅT = 298 K
β = 92.126 (12)°Prism, colourless
V = 724.03 (10) Å30.21 × 0.15 × 0.09 mm
Z = 2

Data collection

Enraf–Nonius FR590 diffractometer1490 reflections with I > 2σ(I)
graphiteRint = 0.034
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.981, Tmax = 0.991k = −7→7
18985 measured reflectionsl = −17→17
1827 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0546P)2] where P = (Fo2 + 2Fc2)/3
1827 reflections(Δ/σ)max = 0.029
195 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1W0.5721 (2)0.8481 (4)0.0536 (2)0.0823 (9)
H1A0.61620.72430.04480.123*
H1B0.48670.85120.03720.123*
O10.90465 (17)0.6665 (3)0.10377 (11)0.0322 (4)
H10.91570.63920.04330.048*
O21.01902 (18)0.1204 (3)0.09344 (12)0.0334 (4)
H20.9917−0.00370.11570.05*
O31.03440 (19)0.0001 (3)0.30071 (13)0.0403 (4)
O40.73158 (19)0.1340 (3)0.14502 (13)0.0407 (4)
H40.67440.06210.10920.061*
O50.7005 (2)0.4019 (3)0.02549 (15)0.0484 (5)
C10.8810 (2)0.4586 (4)0.15549 (16)0.0268 (5)
C21.0096 (2)0.2926 (4)0.16956 (16)0.0281 (5)
C30.9894 (2)0.1855 (4)0.27440 (16)0.0283 (5)
C40.9048 (2)0.3500 (4)0.33153 (16)0.0288 (5)
C50.8816 (2)0.3586 (5)0.43499 (17)0.0375 (6)
H50.92060.24910.47950.045*
C60.7988 (3)0.5348 (5)0.46952 (18)0.0411 (6)
H60.78270.54620.53870.049*
C70.7396 (3)0.6945 (5)0.40303 (18)0.0411 (6)
H70.68420.81220.42820.049*
C80.7608 (2)0.6834 (5)0.29942 (17)0.0349 (5)
H80.71970.79070.25480.042*
C90.8446 (2)0.5086 (4)0.26450 (16)0.0270 (5)
C100.7606 (2)0.3286 (4)0.10134 (17)0.0282 (5)
C111.1452 (2)0.4353 (5)0.1714 (2)0.0373 (6)
H11A1.16240.48810.10290.045*
H11B1.13330.57090.21380.045*
C121.2692 (3)0.3023 (5)0.2109 (2)0.0428 (6)
H121.28880.16490.17740.051*
C131.3534 (3)0.3581 (5)0.2876 (2)0.0420 (6)
C141.4737 (3)0.2069 (7)0.3225 (3)0.0626 (9)
H14A1.46210.16230.39210.094*
H14B1.55990.29080.31720.094*
H14C1.4760.07110.28050.094*
C151.3374 (4)0.5712 (7)0.3500 (3)0.0759 (11)
H15A1.35210.53390.42080.114*
H15B1.24470.63260.33870.114*
H15C1.4050.68440.33070.114*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1W0.0610 (13)0.0400 (13)0.142 (2)0.0055 (11)−0.0517 (14)−0.0227 (15)
O10.0497 (9)0.0228 (9)0.0242 (7)−0.0045 (7)0.0027 (7)0.0025 (7)
O20.0465 (10)0.0265 (9)0.0274 (8)−0.0033 (7)0.0040 (7)−0.0043 (7)
O30.0463 (10)0.0360 (10)0.0382 (10)0.0086 (8)−0.0046 (8)0.0069 (9)
O40.0463 (10)0.0323 (10)0.0424 (10)−0.0122 (8)−0.0154 (7)0.0085 (9)
O50.0588 (11)0.0386 (11)0.0458 (11)−0.0091 (9)−0.0246 (9)0.0103 (8)
C10.0341 (12)0.0224 (12)0.0238 (11)−0.0019 (9)0.0006 (9)0.0017 (9)
C20.0334 (11)0.0246 (11)0.0263 (11)−0.0016 (9)0.0003 (9)−0.0041 (9)
C30.0289 (10)0.0303 (13)0.0252 (10)−0.0023 (10)−0.0065 (8)0.0000 (10)
C40.0283 (11)0.0315 (12)0.0263 (11)−0.0018 (10)−0.0027 (9)0.0004 (10)
C50.0386 (12)0.0475 (16)0.0259 (11)0.0041 (12)−0.0033 (10)0.0052 (11)
C60.0414 (14)0.0581 (18)0.0241 (12)−0.0001 (13)0.0034 (11)−0.0045 (12)
C70.0426 (13)0.0433 (15)0.0380 (13)0.0036 (12)0.0089 (11)−0.0046 (13)
C80.0422 (12)0.0297 (13)0.0327 (12)0.0013 (11)0.0014 (10)0.0017 (11)
C90.0307 (11)0.0248 (11)0.0256 (11)−0.0052 (9)0.0009 (9)−0.0005 (9)
C100.0349 (11)0.0226 (12)0.0269 (11)0.0015 (9)−0.0010 (9)0.0005 (9)
C110.0329 (12)0.0359 (14)0.0434 (14)−0.0057 (10)0.0037 (11)−0.0034 (11)
C120.0330 (12)0.0399 (15)0.0558 (16)−0.0009 (11)0.0083 (12)−0.0098 (13)
C130.0336 (12)0.0421 (15)0.0503 (15)−0.0053 (12)0.0028 (11)0.0000 (13)
C140.0361 (14)0.066 (2)0.085 (2)−0.0035 (15)−0.0045 (14)0.0077 (19)
C150.083 (3)0.065 (3)0.078 (3)0.008 (2)−0.024 (2)−0.0182 (19)

Geometric parameters (Å, °)

O1W—H1A0.840C6—C71.378 (4)
O1W—H1B0.840C6—H60.93
O1—C11.402 (3)C7—C81.385 (3)
O1—H10.82C7—H70.93
O2—C21.415 (3)C8—C91.378 (3)
O2—H20.82C8—H80.93
O3—C31.200 (3)C11—C121.489 (4)
O4—C101.297 (3)C11—H11A0.97
O4—H40.82C11—H11B0.97
O5—C101.208 (3)C12—C131.306 (4)
C1—C91.514 (3)C12—H120.93
C1—C101.527 (3)C13—C151.490 (5)
C1—C21.564 (3)C13—C141.501 (4)
C2—C31.528 (3)C14—H14A0.96
C2—C111.534 (3)C14—H14B0.96
C3—C41.471 (3)C14—H14C0.96
C4—C91.381 (3)C15—H15A0.96
C4—C51.386 (3)C15—H15B0.96
C5—C61.376 (4)C15—H15C0.96
C5—H50.93
H1A—O1W—H1B118C9—C8—H8121
C1—O1—H1109.5C7—C8—H8121
C2—O2—H2109.5C8—C9—C4120.5 (2)
C10—O4—H4109.5C8—C9—C1127.7 (2)
O1—C1—C9109.97 (18)C4—C9—C1111.8 (2)
O1—C1—C10109.13 (17)O5—C10—O4124.5 (2)
C9—C1—C10109.80 (18)O5—C10—C1122.6 (2)
O1—C1—C2116.27 (18)O4—C10—C1112.94 (19)
C9—C1—C2102.25 (17)C12—C11—C2112.8 (2)
C10—C1—C2109.17 (18)C12—C11—H11A109
O2—C2—C3111.45 (19)C2—C11—H11A109
O2—C2—C11108.25 (18)C12—C11—H11B109
C3—C2—C11109.75 (19)C2—C11—H11B109
O2—C2—C1114.67 (18)H11A—C11—H11B107.8
C3—C2—C1103.27 (18)C13—C12—C11126.9 (3)
C11—C2—C1109.33 (18)C13—C12—H12116.5
O3—C3—C4128.8 (2)C11—C12—H12116.5
O3—C3—C2124.4 (2)C12—C13—C15123.7 (3)
C4—C3—C2106.77 (19)C12—C13—C14122.3 (3)
C9—C4—C5121.5 (2)C15—C13—C14113.9 (3)
C9—C4—C3109.08 (19)C13—C14—H14A109.5
C5—C4—C3129.4 (2)C13—C14—H14B109.5
C6—C5—C4117.7 (2)H14A—C14—H14B109.5
C6—C5—H5121.2C13—C14—H14C109.5
C4—C5—H5121.2H14A—C14—H14C109.5
C5—C6—C7120.9 (2)H14B—C14—H14C109.5
C5—C6—H6119.5C13—C15—H15A109.5
C7—C6—H6119.5C13—C15—H15B109.5
C6—C7—C8121.4 (3)H15A—C15—H15B109.5
C6—C7—H7119.3C13—C15—H15C109.5
C8—C7—H7119.3H15A—C15—H15C109.5
C9—C8—C7118.0 (2)H15B—C15—H15C109.5
O1—C1—C2—O2−94.2 (2)C7—C8—C9—C40.1 (3)
C9—C1—C2—O2146.03 (19)C7—C8—C9—C1178.9 (2)
C10—C1—C2—O229.8 (2)C5—C4—C9—C81.0 (3)
O1—C1—C2—C3144.38 (19)C3—C4—C9—C8−179.4 (2)
C9—C1—C2—C324.6 (2)C5—C4—C9—C1−177.9 (2)
C10—C1—C2—C3−91.7 (2)C3—C4—C9—C11.7 (3)
O1—C1—C2—C1127.6 (3)O1—C1—C9—C840.0 (3)
C9—C1—C2—C11−92.2 (2)C10—C1—C9—C8−80.0 (3)
C10—C1—C2—C11151.53 (18)C2—C1—C9—C8164.2 (2)
O2—C2—C3—O330.5 (3)O1—C1—C9—C4−141.13 (19)
C11—C2—C3—O3−89.4 (3)C10—C1—C9—C498.8 (2)
C1—C2—C3—O3154.2 (2)C2—C1—C9—C4−17.0 (2)
O2—C2—C3—C4−148.40 (18)O1—C1—C10—O50.7 (3)
C11—C2—C3—C491.7 (2)C9—C1—C10—O5121.3 (2)
C1—C2—C3—C4−24.8 (2)C2—C1—C10—O5−127.3 (2)
O3—C3—C4—C9−163.8 (2)O1—C1—C10—O4−179.68 (19)
C2—C3—C4—C915.1 (2)C9—C1—C10—O4−59.1 (3)
O3—C3—C4—C515.8 (4)C2—C1—C10—O452.3 (2)
C2—C3—C4—C5−165.4 (2)O2—C2—C11—C12−69.4 (3)
C9—C4—C5—C6−1.6 (4)C3—C2—C11—C1252.5 (3)
C3—C4—C5—C6179.0 (2)C1—C2—C11—C12165.1 (2)
C4—C5—C6—C71.0 (4)C2—C11—C12—C13−123.5 (3)
C5—C6—C7—C80.1 (4)C11—C12—C13—C150.3 (5)
C6—C7—C8—C9−0.7 (4)C11—C12—C13—C14178.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.932.729 (2)166
O2—H2···O1ii0.822.082.846 (2)155
O4—H4···O1Wii0.821.722.520 (3)164
O1W—H1B···O5iii0.841.962.785 (3)167
O1W—H1A···O50.842.052.884 (3)173

Symmetry codes: (i) −x+2, y+1/2, −z; (ii) x, y−1, z; (iii) −x+1, y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2966).

References

  • Cunningham, I. D., Danks, T. N., O’Connell, K. T. A. & Scott, P. W. (1999). J. Org. Chem.64, 7330-7337.
  • Duisenberg, A. J. M. (1992). J. Appl. Cryst.25, 92–96.
  • Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst.36, 220–229.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fieser, L. F. & Bader, A. R. (1951). J. Am. Chem. Soc.73, 681–684.
  • Fieser, L. F. & Fieser, M. (1948). J. Am. Chem. Soc.70, 3215–3222. [PubMed]
  • Fieser, L. F., Hartwell, J. L. & Seligman, A. M. (1936). J. Am. Chem. Soc.58, 1223–1228.
  • Hooker, S. C. (1936). J. Am. Chem. Soc.58, 1168–1173.
  • Hooker, S. C. & Steyermark, A. (1936). J. Am. Chem. Soc.58, 1179–1181.
  • Lee, K., Turnbull, P. & Moore, H. W. (1995). J. Org. Chem.60, 461-464.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Nonius (2004). COLLECT Nonius BV, Delft, The Netherlands.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography