PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m174–m175.
Published online 2010 January 16. doi:  10.1107/S160053681000156X
PMCID: PMC2979923

Tris{aqua­bis[3-(2-pyrid­yl)-1H-pyrazole]copper(II)} di-μ9-arsenato-hexa­triaconta-μ2-oxido-octa­deca­oxidoocta­deca­molybdate(VI)

Abstract

The title compound, [Cu(C8H7N3)2(H2O)]3[As2Mo18O62], consists of two subunits, viz. an α-Dawson-type [As2Mo18O62]6− anion and a complex [Cu(C8H7N3)2(H2O)]2+ cation. The copper(II) ion (site symmetry .2) is penta­coordinated in a distorted square-pyramidal manner by four N atoms from two chelating 3-(2-pyrid­yl)pyrazole ligands in equatorial positions and one water mol­ecule in the apical position. In the heteropolyanion, two O atoms of the AsO4 group (3. symmetry) are equally disordered about the threefold rotation axis. N—H(...)O and O—H(...)O hydrogen bonding between the neutral mol­ecules and the water mol­ecules leads to a consolidation of the structure.

Related literature

For background to polyoxometalates, see: Pope & Müller (1991 [triangle]). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009 [triangle]); Zhang, Wei, Shi et al. (2010 [triangle]); Zhang, Wei et al. (2009 [triangle]); Zhang, Yuan et al. (2010 [triangle]). Zhang, Wei, Zhu et al. (2010 [triangle]). For another α-Dawson-type anion, see: Li et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m174-scheme1.jpg

Experimental

Crystal data

  • [Cu(C8H7N3)2(H2O)]3[As2Mo18O62]
  • M r = 3984.45
  • Hexagonal, An external file that holds a picture, illustration, etc.
Object name is e-66-0m174-efi1.jpg
  • a = 21.967 (3) Å
  • c = 34.411 (7) Å
  • V = 14380 (4) Å3
  • Z = 6
  • Mo Kα radiation
  • μ = 3.72 mm−1
  • T = 293 K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.664, T max = 0.755
  • 25458 measured reflections
  • 2750 independent reflections
  • 2053 reflections with I > 2σ(I)
  • R int = 0.085

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.123
  • S = 1.00
  • 2750 reflections
  • 254 parameters
  • 14 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 2.25 e Å−3
  • Δρmin = −1.15 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681000156X/wm2290sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000156X/wm2290Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Chinese Academy of Sciences (‘Hundred Talents Program’) and the Ministry of Science and Technology of China (grant No. 2007CB607608), Shandong Provincial Education Department and Shandong Institute of Education are gratefully acknowledged.

supplementary crystallographic information

Comment

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope et al., 1991). In our group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei et al., 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the title compound consists of two subunits, viz. of an α-Dawson-type [As2Mo18O62]6- anion (Li et al., 2007) and a complex [Cu(H2O)(C8H7N3)2]2+ cation. The copper ion is penta-coordinated in a distorted square-pyramidal geometry by four N atoms from two 3-(2-pyridyl)pyrazole ligands and by one water molecule. The Cu—N bond lengths are in the range of 1.984 (7)—1.985 (8) Å and the Cu—O bond length is 2.29 (2) Å. In the heteropolyanion, there are four kinds of oxygen atoms according to their coordination manner: (i) 18 terminal O atoms bonded to one Mo atom with their Mo—O distances in the range of 1.651 (6)—1.690 (6) Å; (ii) 36 µ2 O atoms, the Mo—O distances in the range of 1.797 (5)—2.117 (5) Å; (iii) six µ3 O atoms shared by one As and two Mo atoms, the Mo—O distances varying from 1.653 (8) to 2.359 (1) Å; (iv) two µ4 O atoms which are coordinated to one As atom and three Mo atoms, Mo—O distances are between 1.728 (7) and 2.341 (7) Å, respectively. The resulting MoO6 octahedra are considerably distorted. The AsO4 group is disordered about a threefold rotation axis and exhibuts two sets of short As—O bond lenghts to the disordered O atoms (50% occupation) and one longer As—O bond. N—H···O and O—H···O hydrogen bonding between the neutral molecules and the water molecules leads to a consolidation of the structure (Fig. 2; Table 2) which also contains accessible voids of ca. 136 Å3.

Experimental

A mixture of 3-(2-pyridyl)pyrazole (1 mmoL 0.14 g), sodium molybdate (2 mmoL, 0.48 g), sodium arsenate (0.2 mmoL, 0.08 g) and copper dichloride dihydrate (1 mmoL, 0.28 g) in 14 ml distilled water was sealed in a 25 ml Teflon-lined stainless steel autoclave and was kept at 433 K for three days. Blue crystals suitable for the X-ray experiment were obtained. Anal. Calc. for C48H48As2Cu3Mo18N18O65: C 14.46, H 1.20, N 6.32%; Found: C 14.24, H 1.01, N 6.23%.

Refinement

All hydrogen atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms. The H atoms of the water molecule were located from difference density maps and were refined with d(O—H) = 0.83 (2) Å, and with a fixed Uiso of 0.80 Å2. In the AsO4 unit, two oxygen atoms (O6 and O10) are disordered around a threefold rotation axis. Both positions were refined with split positions and an occupancy ratio of 1:1. In the final difference Fourier map the highest peak is 3.20 Å from atom O2 and the deepest hole is 0.67 A Å from atom O11. The highest peak is located in the voids of the crystal structure and may be associated with an additional water molecule. However, refinement of this position did not result in a reasonable model. Hence this position was excluded from the final refinement.

Figures

Fig. 1.
The cation and anion of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
Fig. 2.
The crystal packing of the title compound, displayed with hydrogen bonds as dashed lines.

Crystal data

[Cu(C8H7N3)2(H2O)]3[As2Mo18O62]Dx = 2.761 Mg m3
Mr = 3984.45Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3cCell parameters from 2750 reflections
Hall symbol: -R 3 2"cθ = 1.6–25.0°
a = 21.967 (3) ŵ = 3.72 mm1
c = 34.411 (7) ÅT = 293 K
V = 14380 (4) Å3Block, blue
Z = 60.12 × 0.10 × 0.08 mm
F(000) = 11346

Data collection

Bruker APEXII CCD diffractometer2750 independent reflections
Radiation source: fine-focus sealed tube2053 reflections with I > 2σ(I)
graphiteRint = 0.085
phi and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −25→26
Tmin = 0.664, Tmax = 0.755k = −26→26
25458 measured reflectionsl = −40→39

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.063P)2 + 278.6957P] where P = (Fo2 + 2Fc2)/3
2750 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 2.25 e Å3
14 restraintsΔρmin = −1.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
As10.00000.00000.05884 (4)0.0161 (3)
C10.2641 (5)0.2974 (5)0.1696 (3)0.039 (2)
C20.1872 (5)0.3163 (5)0.2056 (3)0.042 (2)
H20.16980.31990.22960.050*
C30.1552 (7)0.3216 (5)0.1730 (3)0.055 (3)
H30.11920.33210.17470.066*
C40.1768 (7)0.3112 (5)0.1380 (3)0.055 (3)
H40.15340.31130.11550.065*
C50.2326 (6)0.3008 (5)0.1359 (3)0.042 (3)
H50.24930.29600.11190.050*
C60.2831 (5)0.3216 (5)0.3283 (2)0.037 (2)
C70.2761 (7)0.3645 (7)0.3554 (4)0.066 (3)
H70.28090.36360.38220.079*
C80.2605 (7)0.4092 (6)0.3343 (3)0.067 (4)
H80.25230.44380.34420.080*
Cu10.28491 (9)0.28491 (9)0.25000.0444 (5)
Mo10.06070 (4)0.10373 (4)0.14523 (2)0.0293 (2)
Mo20.03113 (4)0.17477 (4)0.05152 (2)0.0270 (2)
Mo30.17292 (4)0.14366 (4)0.05871 (2)0.0298 (2)
N10.2731 (5)0.3393 (5)0.2924 (2)0.045 (2)
N20.2599 (5)0.3921 (5)0.2969 (3)0.057 (3)
H2A0.25180.41260.27790.068*
N30.2426 (4)0.3063 (4)0.2048 (2)0.0381 (19)
O10.00000.00000.1090 (3)0.023 (2)
O2−0.0297 (3)0.0513 (3)0.16857 (15)0.0250 (12)
O30.1016 (3)0.1636 (3)0.18082 (17)0.0336 (15)
O40.0331 (3)0.1452 (3)0.10985 (16)0.0261 (13)
O50.1395 (3)0.1213 (3)0.11134 (16)0.0271 (13)
O6−0.0665 (5)0.1212 (5)0.0577 (3)0.075 (2)
O70.0438 (3)0.2531 (3)0.06422 (17)0.0344 (15)
O80.2534 (3)0.2085 (3)0.06733 (18)0.0412 (17)
O90.0315 (4)0.1816 (3)−0.00079 (17)0.0445 (18)
O10A−0.0288 (5)0.0530 (5)0.0445 (3)0.019 (2)0.50
O10B−0.0832 (5)−0.0297 (5)0.0446 (3)0.016 (2)0.50
O110.1808 (10)0.1808 (10)0.25000.142 (2)
O12A0.1344 (7)0.2076 (7)0.0591 (4)0.030 (3)0.50
O12B0.1111 (7)0.1708 (8)0.0481 (4)0.027 (3)0.50
H1W0.1487 (19)0.179 (2)0.264 (3)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
As10.0173 (4)0.0173 (4)0.0136 (7)0.0086 (2)0.0000.000
C10.043 (6)0.025 (5)0.034 (6)0.005 (4)−0.004 (4)0.000 (4)
C20.058 (7)0.042 (6)0.032 (6)0.030 (5)−0.006 (5)−0.003 (4)
C30.081 (9)0.041 (6)0.051 (7)0.038 (6)−0.015 (6)−0.005 (5)
C40.082 (9)0.030 (6)0.055 (8)0.031 (6)−0.018 (6)−0.004 (5)
C50.063 (7)0.032 (5)0.020 (5)0.016 (5)−0.011 (4)−0.002 (4)
C60.045 (6)0.044 (6)0.018 (5)0.019 (5)0.004 (4)0.000 (4)
C70.076 (9)0.065 (8)0.042 (7)0.025 (7)0.010 (6)0.006 (6)
C80.099 (10)0.058 (8)0.040 (7)0.036 (7)0.021 (7)−0.002 (6)
Cu10.0590 (9)0.0590 (9)0.0215 (9)0.0344 (10)−0.0019 (4)0.0019 (4)
Mo10.0391 (5)0.0246 (4)0.0214 (4)0.0139 (4)−0.0087 (3)−0.0058 (3)
Mo20.0362 (5)0.0200 (4)0.0270 (4)0.0156 (3)0.0013 (3)0.0008 (3)
Mo30.0201 (4)0.0244 (4)0.0388 (5)0.0067 (3)−0.0063 (3)−0.0045 (3)
N10.065 (6)0.048 (5)0.022 (4)0.028 (5)0.000 (4)−0.001 (4)
N20.086 (7)0.041 (5)0.044 (6)0.033 (5)0.007 (5)0.016 (4)
N30.048 (5)0.028 (4)0.025 (4)0.009 (4)−0.007 (4)0.003 (3)
O10.027 (3)0.027 (3)0.016 (5)0.0133 (16)0.0000.000
O20.028 (3)0.029 (3)0.016 (3)0.013 (3)0.003 (2)−0.001 (2)
O30.044 (4)0.028 (3)0.023 (3)0.013 (3)−0.008 (3)−0.006 (3)
O40.028 (3)0.027 (3)0.025 (3)0.015 (3)0.006 (2)0.005 (2)
O50.030 (3)0.030 (3)0.024 (3)0.017 (3)0.001 (2)0.001 (2)
O60.074 (3)0.075 (3)0.073 (3)0.0349 (15)−0.0029 (10)0.0033 (10)
O70.048 (4)0.025 (3)0.030 (3)0.018 (3)0.001 (3)−0.001 (3)
O80.024 (3)0.048 (4)0.035 (4)0.005 (3)−0.002 (3)−0.014 (3)
O90.087 (5)0.030 (4)0.022 (3)0.034 (4)0.001 (3)0.002 (3)
O10A0.015 (5)0.022 (6)0.020 (6)0.009 (5)0.003 (4)0.001 (4)
O10B0.017 (5)0.012 (5)0.020 (6)0.009 (4)0.009 (4)0.001 (4)
O110.142 (2)0.142 (2)0.142 (2)0.0707 (13)−0.0005 (7)0.0005 (7)
O12A0.029 (8)0.023 (8)0.037 (9)0.012 (7)0.001 (6)0.001 (6)
O12B0.028 (8)0.029 (8)0.022 (7)0.012 (7)0.004 (6)−0.005 (6)

Geometric parameters (Å, °)

As1—O10Ai1.653 (10)Mo1—O12.341 (5)
As1—O10A1.653 (10)Mo2—O71.658 (6)
As1—O10Aii1.653 (10)Mo2—O12B1.806 (13)
As1—O10B1.677 (10)Mo2—O91.806 (6)
As1—O10Bi1.677 (10)Mo2—O61.872 (9)
As1—O10Bii1.677 (10)Mo2—O12A2.024 (13)
As1—O11.728 (9)Mo2—O42.117 (5)
C1—N31.350 (12)Mo2—O10Bii2.309 (9)
C1—C51.371 (13)Mo2—O10A2.330 (10)
C1—C6iii1.447 (14)Mo3—O81.651 (6)
C2—N31.342 (12)Mo3—O12B1.772 (13)
C2—C31.359 (14)Mo3—O6ii1.878 (9)
C2—H20.9300Mo3—O51.923 (6)
C3—C41.355 (16)Mo3—O12A1.970 (13)
C3—H30.9300Mo3—O9iv2.000 (6)
C4—C51.358 (15)Mo3—O10Bii2.325 (9)
C4—H40.9300Mo3—O10Aii2.359 (10)
C5—H50.9300N1—N21.337 (12)
C6—N11.345 (11)N2—H2A0.8600
C6—C71.389 (15)O1—Mo1i2.341 (5)
C6—C1iii1.447 (14)O1—Mo1ii2.341 (5)
C7—C81.395 (17)O2—Mo1i2.053 (5)
C7—H70.9300O6—Mo3i1.878 (9)
C8—N21.339 (13)O9—Mo3v2.000 (6)
C8—H80.9300O10A—O10Bii1.582 (13)
Cu1—N3iii1.984 (7)O10A—O10B1.599 (13)
Cu1—N31.984 (7)O10A—Mo3i2.359 (10)
Cu1—N11.985 (8)O10B—O10Ai1.582 (13)
Cu1—N1iii1.985 (8)O10B—O12Bi1.698 (17)
Cu1—O112.29 (2)O10B—Mo2i2.309 (9)
Mo1—O31.690 (6)O10B—Mo3i2.325 (9)
Mo1—O41.797 (5)O11—H1W0.84 (8)
Mo1—O21.904 (5)O12A—O12B0.804 (14)
Mo1—O51.959 (6)O12B—O10Bii1.698 (17)
Mo1—O2ii2.053 (5)
O10Ai—As1—O10A111.5 (3)O7—Mo2—O10A157.6 (3)
O10Ai—As1—O10Aii111.5 (3)O12B—Mo2—O10A86.7 (5)
O10A—As1—O10Aii111.5 (3)O9—Mo2—O10A88.2 (3)
O10Ai—As1—O10B56.7 (4)O6—Mo2—O10A58.5 (4)
O10A—As1—O10B57.4 (4)O12A—Mo2—O10A108.2 (5)
O10Aii—As1—O10B145.7 (5)O4—Mo2—O10A80.3 (3)
O10Ai—As1—O10Bi57.4 (4)O10Bii—Mo2—O10A39.9 (3)
O10A—As1—O10Bi145.7 (5)O8—Mo3—O12B114.7 (5)
O10Aii—As1—O10Bi56.7 (4)O8—Mo3—O6ii100.9 (4)
O10B—As1—O10Bi111.8 (3)O12B—Mo3—O6ii143.7 (6)
O10Ai—As1—O10Bii145.7 (5)O8—Mo3—O599.1 (3)
O10A—As1—O10Bii56.7 (4)O12B—Mo3—O591.2 (4)
O10Aii—As1—O10Bii57.4 (4)O6ii—Mo3—O590.1 (3)
O10B—As1—O10Bii111.8 (3)O8—Mo3—O12A92.3 (5)
O10Bi—As1—O10Bii111.8 (3)O12B—Mo3—O12A24.1 (4)
O10Ai—As1—O1107.4 (4)O6ii—Mo3—O12A166.7 (5)
O10A—As1—O1107.4 (4)O5—Mo3—O12A86.0 (4)
O10Aii—As1—O1107.4 (4)O8—Mo3—O9iv95.5 (3)
O10B—As1—O1107.0 (3)O12B—Mo3—O9iv80.4 (5)
O10Bi—As1—O1107.0 (3)O6ii—Mo3—O9iv89.6 (4)
O10Bii—As1—O1107.0 (3)O5—Mo3—O9iv165.2 (2)
N3—C1—C5122.0 (10)O12A—Mo3—O9iv90.9 (5)
N3—C1—C6iii113.1 (8)O8—Mo3—O10Bii161.3 (3)
C5—C1—C6iii124.9 (9)O12B—Mo3—O10Bii46.6 (5)
N3—C2—C3123.3 (10)O6ii—Mo3—O10Bii97.8 (4)
N3—C2—H2118.4O5—Mo3—O10Bii82.7 (3)
C3—C2—H2118.4O12A—Mo3—O10Bii69.1 (5)
C4—C3—C2118.6 (11)O9iv—Mo3—O10Bii82.7 (3)
C4—C3—H3120.7O8—Mo3—O10Aii158.5 (3)
C2—C3—H3120.7O12B—Mo3—O10Aii86.2 (5)
C3—C4—C5119.9 (11)O6ii—Mo3—O10Aii57.9 (4)
C3—C4—H4120.1O5—Mo3—O10Aii84.9 (3)
C5—C4—H4120.1O12A—Mo3—O10Aii109.0 (5)
C4—C5—C1119.1 (10)O9iv—Mo3—O10Aii82.5 (3)
C4—C5—H5120.4O10Bii—Mo3—O10Aii39.9 (3)
C1—C5—H5120.4N2—N1—C6106.6 (8)
N1—C6—C7109.3 (10)N2—N1—Cu1139.1 (7)
N1—C6—C1iii115.9 (8)C6—N1—Cu1114.2 (7)
C7—C6—C1iii134.8 (9)N1—N2—C8112.1 (9)
C6—C7—C8106.0 (10)N1—N2—H2A124.0
C6—C7—H7127.0C8—N2—H2A124.0
C8—C7—H7127.0C2—N3—C1116.9 (8)
N2—C8—C7106.1 (11)C2—N3—Cu1126.5 (7)
N2—C8—H8127.0C1—N3—Cu1115.5 (7)
C7—C8—H8127.0As1—O1—Mo1i122.13 (18)
N3iii—Cu1—N3166.7 (4)As1—O1—Mo1122.13 (18)
N3iii—Cu1—N180.7 (3)Mo1i—O1—Mo194.3 (2)
N3—Cu1—N1102.5 (3)As1—O1—Mo1ii122.13 (18)
N3iii—Cu1—N1iii102.5 (3)Mo1i—O1—Mo1ii94.3 (2)
N3—Cu1—N1iii80.7 (3)Mo1—O1—Mo1ii94.3 (2)
N1—Cu1—N1iii152.7 (5)Mo1—O2—Mo1i120.4 (3)
N3iii—Cu1—O1183.4 (2)Mo1—O4—Mo2149.5 (3)
N3—Cu1—O1183.4 (2)Mo3—O5—Mo1142.9 (3)
N1—Cu1—O11103.6 (3)Mo2—O6—Mo3i144.3 (5)
N1iii—Cu1—O11103.6 (3)Mo2—O9—Mo3v170.5 (4)
O3—Mo1—O4106.2 (3)O10Bii—O10A—O10B121.6 (9)
O3—Mo1—O298.8 (3)O10Bii—O10A—As162.4 (5)
O4—Mo1—O294.5 (2)O10B—O10A—As162.0 (5)
O3—Mo1—O5101.8 (3)O10Bii—O10A—Mo269.3 (5)
O4—Mo1—O589.2 (2)O10B—O10A—Mo2167.6 (7)
O2—Mo1—O5157.1 (2)As1—O10A—Mo2125.6 (5)
O3—Mo1—O2ii95.3 (2)O10Bii—O10A—Mo3i164.3 (7)
O4—Mo1—O2ii158.1 (2)O10B—O10A—Mo3i68.9 (5)
O2—Mo1—O2ii85.9 (3)As1—O10A—Mo3i121.8 (5)
O5—Mo1—O2ii82.5 (2)Mo2—O10A—Mo3i99.2 (4)
O3—Mo1—O1164.9 (3)O10Ai—O10B—O10A118.4 (9)
O4—Mo1—O187.7 (2)O10Ai—O10B—As160.9 (5)
O2—Mo1—O173.8 (2)O10A—O10B—As160.5 (5)
O5—Mo1—O183.8 (2)O10Ai—O10B—O12Bi121.6 (8)
O2ii—Mo1—O171.36 (19)O10A—O10B—O12Bi119.9 (8)
O7—Mo2—O12B113.9 (5)As1—O10B—O12Bi159.0 (8)
O7—Mo2—O9100.7 (3)O10Ai—O10B—Mo2i70.8 (5)
O12B—Mo2—O988.5 (5)O10A—O10B—Mo2i169.3 (7)
O7—Mo2—O699.7 (4)As1—O10B—Mo2i125.6 (5)
O12B—Mo2—O6144.4 (5)O12Bi—O10B—Mo2i50.8 (5)
O9—Mo2—O697.0 (4)O10Ai—O10B—Mo3i165.0 (7)
O7—Mo2—O12A91.1 (5)O10A—O10B—Mo3i71.2 (5)
O12B—Mo2—O12A23.4 (4)As1—O10B—Mo3i122.5 (5)
O9—Mo2—O12A98.1 (5)O12Bi—O10B—Mo3i49.3 (5)
O6—Mo2—O12A159.5 (5)Mo2i—O10B—Mo3i98.7 (3)
O7—Mo2—O492.9 (3)Cu1—O11—H1W117 (2)
O12B—Mo2—O483.0 (4)O12B—O12A—Mo364.0 (14)
O9—Mo2—O4166.0 (2)O12B—O12A—Mo263.0 (14)
O6—Mo2—O483.8 (3)Mo3—O12A—Mo2123.3 (7)
O12A—Mo2—O478.2 (4)O12A—O12B—O10Bii155.9 (19)
O7—Mo2—O10Bii158.9 (3)O12A—O12B—Mo391.9 (16)
O12B—Mo2—O10Bii46.8 (5)O10Bii—O12B—Mo384.1 (7)
O9—Mo2—O10Bii88.6 (3)O12A—O12B—Mo293.7 (16)
O6—Mo2—O10Bii98.0 (4)O10Bii—O12B—Mo282.4 (7)
O12A—Mo2—O10Bii68.6 (5)Mo3—O12B—Mo2158.4 (8)
O4—Mo2—O10Bii77.5 (3)

Symmetry codes: (i) −y, xy, z; (ii) −x+y, −x, z; (iii) y, x, −z+1/2; (iv) y, −x+y, −z; (v) xy, x, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O6vi0.862.273.097 (13)162
O11—H1W···O3iii0.84 (8)2.69 (11)2.860 (10)94 (8)

Symmetry codes: (vi) x+1/3, xy+2/3, z+1/6; (iii) y, x, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2290).

References

  • Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, F. Y., Qu, X. S. & Qiu, Y. F. (2007). Cryst. Res. Technol.42, 1036–1043.
  • Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl.30, 34–38.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.
  • Zhang, X., Wei, P., Shi, C., Li, B. & Hu, B. (2010). Acta Cryst. E66, m26–m27. [PMC free article] [PubMed]
  • Zhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des.9, 4424–4428.
  • Zhang, X., Wei, P., Zhu, W., Li, B. & Hu, B. (2010). Acta Cryst. E66, m127–m128. [PMC free article] [PubMed]
  • Zhang, X., Yuan, D., Wei, P., Li, B. & Hu, B. (2010). Acta Cryst. E66, m152–m153. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography