PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o395.
Published online 2010 January 16. doi:  10.1107/S1600536809054385
PMCID: PMC2979914

2,2′-(Quinoxaline-2,3-di­yl)diphenol dimethyl­formamide solvate

Abstract

In the title compound, C20H14N2O2·C3H7NO, the quinoxaline ring forms dihedral angles of 64.9 (2) and 30.9 (2)° with the two substituted benzene rings, which are themselves inclined at 58.4 (2)°. An intra­molecular O—H(...)N hydrogen bond occurs. In the crystal, mol­ecules are linked through inter­molecular O—H(...)O hydrogen bonds.

Related literature

For details of cyanide-catalysed cyclizations via aldimine coupling, see: Reich et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o395-scheme1.jpg

Experimental

Crystal data

  • C20H14N2O2·C3H7NO
  • M r = 387.43
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o395-efi1.jpg
  • a = 9.759 (2) Å
  • b = 10.672 (2) Å
  • c = 19.049 (4) Å
  • V = 1983.9 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.23 × 0.21 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.980, T max = 0.983
  • 11593 measured reflections
  • 4322 independent reflections
  • 3434 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.102
  • S = 1.05
  • 4322 reflections
  • 266 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809054385/sj2713sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054385/sj2713Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges Dalian University of Technology for financial support.

supplementary crystallographic information

Comment

Reich and co-workers have reported a series of compounds with the cyanide-catalyzed cyclizations via aldimine coupling (Reich et al., 2004), including the crystal structure of 2,2'-(quinoxaline-2,3-diyl)diphenol. In this paper, the title compound, Fig. 1, 2,2'-(quinoxaline-2,3-diyl)diphenol as the N,Ndimethylformamide solvate is formed in an aldimine coupling reaction and its structure is reported here.

In the compound, the dimethylformamide molecule is linked to the 2,2'-(quinoxaline-2,3-diyl)diphenol molecule through an intermolecular O2—H2···O3 hydrogen bond (Table 1 and Fig. 2). The quinoxaline ring forms dihedral angles of 64.9 (2) and 30.9 (2)°, respectively, with the two substituted benzene rings C9-C14 and C15-C20. The dihedral angle between the two substituted benzene rings is 58.4 (2)°. An intramolecular O1—H1···N1 hydrogen bond (Table 1) is observed in the 2,2'-(quinoxaline-2,3-diyl)diphenol molecule.

Experimental

The compound was prepared according to a literature procedure (Reich et al., 2004). Yellow block-shaped crystals suitable for X-ray structural determination were obtained by slow diffusion of diethyl ether into a N,Ndimethylformamide solution.

Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93-0.96 Å, O—H distances of 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl and O). In the absence of significant anomalous scattering effects, 1843 Friedel opposites were merged in the final refinement.

Figures

Fig. 1.
The molecular structure of the title compound with ellipsoids drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
Fig. 2.
The molecular packing of the title compound, viewed along the c axis. Hydrogen bonds are drawn as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.

Crystal data

C20H14N2O2·C3H7NOF(000) = 816
Mr = 387.43Dx = 1.297 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4283 reflections
a = 9.759 (2) Åθ = 2.2–25.9°
b = 10.672 (2) ŵ = 0.09 mm1
c = 19.049 (4) ÅT = 298 K
V = 1983.9 (7) Å3Block, yellow
Z = 40.23 × 0.21 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer4322 independent reflections
Radiation source: fine-focus sealed tube3434 reflections with I > 2σ(I)
graphiteRint = 0.028
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −12→12
Tmin = 0.980, Tmax = 0.983k = −13→10
11593 measured reflectionsl = −24→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0529P)2 + 0.0554P] where P = (Fo2 + 2Fc2)/3
4322 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.87527 (15)0.67113 (14)0.14671 (8)0.0496 (3)
N20.61529 (14)0.78228 (13)0.14710 (8)0.0494 (4)
N30.22105 (17)0.28969 (17)0.15246 (8)0.0639 (4)
O11.13645 (14)0.73589 (16)0.15603 (8)0.0771 (4)
H11.06730.69790.16810.116*
O20.83600 (16)1.05141 (12)0.16631 (7)0.0695 (4)
H20.87921.11620.17310.104*
O30.00473 (16)0.23971 (15)0.18290 (9)0.0795 (5)
C10.76781 (19)0.61476 (16)0.18052 (9)0.0483 (4)
C20.63779 (19)0.66962 (16)0.18002 (9)0.0486 (4)
C30.5287 (2)0.61110 (19)0.21599 (11)0.0639 (5)
H30.44190.64720.21630.077*
C40.5521 (3)0.5016 (2)0.25004 (11)0.0711 (6)
H40.48080.46350.27440.085*
C50.6807 (2)0.4452 (2)0.24920 (11)0.0721 (6)
H50.69350.36910.27210.087*
C60.7878 (2)0.49954 (18)0.21537 (11)0.0641 (5)
H60.87350.46130.21520.077*
C70.85364 (16)0.77757 (15)0.11304 (8)0.0430 (4)
C80.71927 (17)0.83557 (15)0.11509 (8)0.0433 (4)
C90.68921 (17)0.96032 (16)0.08390 (9)0.0464 (4)
C100.75162 (19)1.06703 (16)0.11096 (9)0.0528 (5)
C110.7215 (2)1.18364 (17)0.08143 (11)0.0638 (5)
H110.76191.25570.09940.077*
C120.6323 (2)1.1920 (2)0.02580 (12)0.0684 (6)
H120.61531.26970.00550.082*
C130.5678 (2)1.0874 (2)−0.00042 (12)0.0676 (5)
H130.50621.0943−0.03750.081*
C140.59580 (18)0.97191 (18)0.02901 (11)0.0550 (5)
H140.55170.90090.01190.066*
C150.97327 (16)0.83049 (16)0.07577 (9)0.0453 (4)
C161.10760 (18)0.80861 (18)0.09958 (9)0.0529 (4)
C171.2185 (2)0.8622 (2)0.06566 (11)0.0625 (5)
H171.30650.84960.08300.075*
C181.1996 (2)0.9338 (2)0.00648 (10)0.0633 (5)
H181.27460.9701−0.01570.076*
C191.0700 (2)0.95219 (19)−0.02002 (10)0.0615 (5)
H191.05760.9991−0.06070.074*
C200.95835 (19)0.90080 (18)0.01386 (9)0.0523 (4)
H200.87120.9130−0.00470.063*
C210.2074 (3)0.4182 (2)0.17613 (15)0.0940 (8)
H21A0.25270.47310.14360.141*
H21B0.24830.42680.22170.141*
H21C0.11200.43990.17870.141*
C220.3494 (2)0.2530 (3)0.11988 (14)0.0951 (8)
H22A0.34730.16490.10950.143*
H22B0.42380.27040.15140.143*
H22C0.36190.29930.07720.143*
C230.1181 (2)0.2123 (2)0.15743 (10)0.0660 (5)
H230.13030.13110.14080.079*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0505 (8)0.0416 (8)0.0568 (8)−0.0064 (7)−0.0007 (7)0.0007 (7)
N20.0512 (8)0.0368 (8)0.0601 (8)−0.0058 (6)0.0123 (7)−0.0042 (6)
N30.0591 (10)0.0707 (11)0.0620 (9)0.0009 (9)0.0025 (8)−0.0038 (8)
O10.0513 (8)0.0915 (11)0.0886 (10)−0.0128 (8)−0.0080 (7)0.0264 (9)
O20.0955 (11)0.0479 (8)0.0652 (8)−0.0194 (7)−0.0054 (7)−0.0031 (6)
O30.0707 (10)0.0683 (10)0.0996 (11)−0.0145 (8)0.0137 (9)−0.0173 (8)
C10.0572 (10)0.0390 (8)0.0486 (9)−0.0130 (8)0.0007 (8)−0.0009 (7)
C20.0576 (10)0.0378 (9)0.0504 (9)−0.0130 (9)0.0080 (8)−0.0041 (7)
C30.0657 (12)0.0562 (12)0.0697 (12)−0.0169 (10)0.0190 (10)0.0010 (9)
C40.0841 (16)0.0620 (13)0.0673 (13)−0.0310 (12)0.0107 (12)0.0086 (10)
C50.0904 (17)0.0550 (13)0.0709 (12)−0.0213 (12)−0.0100 (12)0.0199 (10)
C60.0700 (12)0.0502 (11)0.0721 (12)−0.0085 (10)−0.0075 (11)0.0112 (10)
C70.0475 (9)0.0362 (8)0.0454 (8)−0.0051 (7)0.0043 (7)−0.0075 (7)
C80.0478 (8)0.0343 (8)0.0478 (8)−0.0065 (7)0.0088 (8)−0.0061 (7)
C90.0470 (9)0.0364 (8)0.0559 (9)−0.0021 (7)0.0157 (8)−0.0025 (7)
C100.0645 (11)0.0408 (9)0.0530 (10)−0.0061 (8)0.0175 (9)−0.0023 (8)
C110.0821 (13)0.0348 (9)0.0747 (13)−0.0040 (10)0.0253 (11)−0.0012 (9)
C120.0776 (14)0.0490 (12)0.0786 (14)0.0106 (11)0.0244 (12)0.0142 (10)
C130.0598 (12)0.0668 (14)0.0762 (13)0.0110 (11)0.0068 (10)0.0094 (11)
C140.0470 (10)0.0502 (11)0.0679 (11)0.0005 (8)0.0102 (9)−0.0015 (9)
C150.0478 (9)0.0362 (9)0.0519 (9)−0.0041 (7)0.0088 (8)−0.0068 (7)
C160.0544 (10)0.0481 (10)0.0564 (10)−0.0085 (8)0.0057 (8)−0.0063 (8)
C170.0482 (10)0.0697 (13)0.0696 (12)−0.0101 (10)0.0085 (10)−0.0117 (10)
C180.0584 (12)0.0635 (13)0.0681 (12)−0.0121 (10)0.0250 (10)−0.0117 (10)
C190.0715 (13)0.0592 (12)0.0539 (10)−0.0016 (10)0.0217 (9)−0.0018 (9)
C200.0548 (10)0.0509 (10)0.0513 (10)0.0036 (9)0.0120 (8)−0.0033 (8)
C210.0760 (15)0.0876 (18)0.119 (2)−0.0221 (15)0.0046 (15)−0.0334 (16)
C220.0715 (15)0.128 (2)0.0853 (16)0.0205 (16)0.0133 (12)0.0106 (16)
C230.0809 (15)0.0573 (13)0.0598 (12)0.0019 (11)0.0001 (11)−0.0042 (9)

Geometric parameters (Å, °)

N1—C71.321 (2)C9—C141.393 (3)
N1—C11.370 (2)C10—C111.397 (3)
N2—C81.313 (2)C11—C121.374 (3)
N2—C21.374 (2)C11—H110.9300
N3—C231.304 (3)C12—C131.376 (3)
N3—C211.450 (3)C12—H120.9300
N3—C221.452 (3)C13—C141.381 (3)
O1—C161.356 (2)C13—H130.9300
O1—H10.8200C14—H140.9300
O2—C101.348 (2)C15—C201.405 (2)
O2—H20.8200C15—C161.407 (3)
O3—C231.243 (2)C16—C171.384 (3)
C1—C21.398 (3)C17—C181.375 (3)
C1—C61.411 (3)C17—H170.9300
C2—C31.412 (2)C18—C191.376 (3)
C3—C41.356 (3)C18—H180.9300
C3—H30.9300C19—C201.380 (3)
C4—C51.393 (3)C19—H190.9300
C4—H40.9300C20—H200.9300
C5—C61.358 (3)C21—H21A0.9600
C5—H50.9300C21—H21B0.9600
C6—H60.9300C21—H21C0.9600
C7—C81.451 (2)C22—H22A0.9600
C7—C151.479 (2)C22—H22B0.9600
C8—C91.487 (2)C22—H22C0.9600
C9—C101.391 (2)C23—H230.9300
C7—N1—C1118.91 (15)C11—C12—H12119.4
C8—N2—C2117.87 (15)C13—C12—H12119.4
C23—N3—C21120.37 (19)C12—C13—C14119.1 (2)
C23—N3—C22121.7 (2)C12—C13—H13120.5
C21—N3—C22117.9 (2)C14—C13—H13120.5
C16—O1—H1109.5C13—C14—C9120.89 (19)
C10—O2—H2109.5C13—C14—H14119.6
N1—C1—C2120.52 (15)C9—C14—H14119.6
N1—C1—C6119.86 (18)C20—C15—C16117.11 (15)
C2—C1—C6119.61 (17)C20—C15—C7121.67 (15)
N2—C2—C1120.99 (15)C16—C15—C7121.18 (15)
N2—C2—C3119.22 (18)O1—C16—C17116.38 (17)
C1—C2—C3119.74 (17)O1—C16—C15122.97 (16)
C4—C3—C2119.1 (2)C17—C16—C15120.65 (17)
C4—C3—H3120.4C18—C17—C16120.49 (19)
C2—C3—H3120.4C18—C17—H17119.8
C3—C4—C5121.28 (19)C16—C17—H17119.8
C3—C4—H4119.4C17—C18—C19120.25 (18)
C5—C4—H4119.4C17—C18—H18119.9
C6—C5—C4121.0 (2)C19—C18—H18119.9
C6—C5—H5119.5C18—C19—C20119.84 (19)
C4—C5—H5119.5C18—C19—H19120.1
C5—C6—C1119.3 (2)C20—C19—H19120.1
C5—C6—H6120.4C19—C20—C15121.53 (18)
C1—C6—H6120.4C19—C20—H20119.2
N1—C7—C8119.88 (14)C15—C20—H20119.2
N1—C7—C15115.80 (15)N3—C21—H21A109.5
C8—C7—C15124.31 (15)N3—C21—H21B109.5
N2—C8—C7121.74 (15)H21A—C21—H21B109.5
N2—C8—C9114.88 (15)N3—C21—H21C109.5
C7—C8—C9123.34 (14)H21A—C21—H21C109.5
C10—C9—C14119.49 (17)H21B—C21—H21C109.5
C10—C9—C8119.91 (16)N3—C22—H22A109.5
C14—C9—C8120.57 (15)N3—C22—H22B109.5
O2—C10—C9117.14 (15)H22A—C22—H22B109.5
O2—C10—C11123.62 (17)N3—C22—H22C109.5
C9—C10—C11119.22 (18)H22A—C22—H22C109.5
C12—C11—C10120.10 (19)H22B—C22—H22C109.5
C12—C11—H11120.0O3—C23—N3124.4 (2)
C10—C11—H11120.0O3—C23—H23117.8
C11—C12—C13121.16 (19)N3—C23—H23117.8

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.812.6172 (19)168
O1—H1···N10.821.942.647 (2)144

Symmetry codes: (i) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2713).

References

  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Reich, B. J. E., Justice, A. K., Beckstead, B. T., Reibenspies, J. H. & Miller, S. A. (2004). J. Org. Chem.69, 1357–1359. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography