PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): i5.
Published online 2010 January 13. doi:  10.1107/S1600536810000723
PMCID: PMC2979901

Pd2.28(1)Zn10.37(1)Al0.35(1), a ternary γ-brass-type structure

Abstract

Palladium zinc aluminium (2.28/10.37/0.35), Pd2.28(1)Zn10.37(1)Al0.35(1), represents the upper limit of Al substitution into the parent cubic γ-brass Pd2+xZn11−x. The structure can be described in terms of a 26-atom cluster consisting of an inner tetra­hedron (IT), an outer tetra­hedron (OT), an octa­hedron (OH) and a cubocta­hedron (CO), with the substituted Al atoms partially occupying the IT (.3m) and CO (..m) sites.

Related literature

For related literature, see: Arnberg & Westman (1972 [triangle]); Edström & Westman (1969 [triangle]); Gross et al. (2001 [triangle]); Gourdon & Miller (2006 [triangle]); Harbrecht et al. (2002 [triangle]); Thimmaiah & Miller (2010 [triangle]). For standardization of crystal structures, see: Gelato & Parthé (1987 [triangle]).

Experimental

Crystal data

  • Pd2.28Zn10.37Al0.35
  • M r = 929.56
  • Cubic, An external file that holds a picture, illustration, etc.
Object name is e-66-000i5-efi1.jpg
  • a = 9.1079 (11) Å
  • V = 755.54 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 37.46 mm−1
  • T = 293 K
  • 0.12 × 0.06 × 0.03 mm

Data collection

  • Stoe IPDS-II diffractometer
  • Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2005 [triangle]) T min = 0.054, T max = 0.465
  • 11243 measured reflections
  • 339 independent reflections
  • 337 reflections with I > 2σ(I)
  • R int = 0.069

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.068
  • S = 1.02
  • 339 reflections
  • 22 parameters
  • Δρmax = 1.05 e Å−3
  • Δρmin = −1.19 e Å−3
  • Absolute structure: Flack (1983 [triangle])
  • Flack parameter: 0.04 (4)

Data collection: X-AREA (Stoe & Cie, 2009 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810000723/mg2090sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000723/mg2090Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was carried out at the Ames Laboratory, which is operated for the US Department of Energy by Iowa State University under contract No. DE-AC02-07CH11358. This work was supported by the Materials Sciences Division of the Office of Basic Energy Sciences of the US Department of Energy.

supplementary crystallographic information

Comment

Various M2Zn11 phases [M = Rh (Gross et al., 2001), Pd (Gourdon & Miller, 2006), Ir (Arnberg & Westman, 1972), Pt (Harbrecht et al., 2002)] adopt the γ-brass type structure (Pearson code cI52). To study the influence of valence electron concentration (vec) on γ-brass type phases, we attempted replacing Zn by Al in the parent Pd2 + xZn11 - x phase (Gourdon & Miller, 2006). Initially obtained as a side product, Pd2.28 (1)Zn10.37 (1)Al0.35 (1) represents the upper limit of Al substitution in the Pd2 + xZn11 - x phase. Further substitution of Al leads to 2×2×2 superstructures of γ-brass with lattice parameters ranging from 18.0700 (3) to 18.1600 (2) Å (Pearson code cF400–cF416) (Thimmaiah & Miller, 2010).

In terms of the 26-atom clusters (in bcc arrangement) commonly used to describe the structure of γ-brass, the inner tetrahedron (IT) and cuboctahedron (CO) are occupied by mixtures of Zn and Al atoms, the outer tetrahedron (OT) is fully occupied by Pd atoms, and the octahedron (OH) is occupied by a mixture of Zn and Pd atoms (Fig. 1a). Similar mixing of Zn and Pd atoms on the OH sites is observed in binary Pd2 + xZn11 - x (Gourdon & Miller, 2006; Edström & Westman, 1969). An alternative description involves four interpenetrating icosahedra, which are constructed around each OT atom and encapsulate a tetrahedron formed by IT atoms (Fig. 1 b). The IT and OT sites are each surrounded by 12 nearest neighbours [at distances of 2.666 (1)–2.789 (2) Å and 2.624 (1)–2.794 (1) Å, respectively] forming distorted icosahedra. On the other hand, the coordination numbers are 13 around the OH site [2.591 (2)–2.945 (1) Å] and 11 around the CO site [2.612 (1)–2.945 (1) Å].

Experimental

The title compound was prepared from 0.5 - g mixtures of the elements (Pd foil, MPC, Ames Laboratory, 99.999%; Zn ingot, MPC, Ames Laboratory, 99.999%; Al tear drop, MPC, Ames Laboratory, 99.999%) loaded into cleaned Ta tubes, which were placed in evacuated (10-5 torr) and sealed silica tubes. The tubes were heated at 30 °C h-1 to 850 °C, kept there for 12 h, cooled to 550 °C over 12 h, equilibrated there for 3 d, and then cooled to room temperature by shutting off the furnace.

Refinement

Refinement of a starting model (Gourdon & Miller, 2006) led to a mixture of 0.09 (3) Pd and 0.91 (3) Zn in the OH sites. However, the IT and CO sites, initially assumed to be fully occupied by Zn atoms, exhibited elevated isotropic displacement parameters. Modeling these sites with a mixture of Zn and Al resulted in the refined composition Pd2.28 (1)Zn10.37 (1)Al0.35 (1). Analysis of multiple crystals obtained from the same and other batches gave the same site occupancies. Within the limitation of the technique, semiquantitative energy-dispersive X-ray analysis corroborate this chemical composition. The structure was standardized by means of the program STRUCTURE TIDY (Gelato & Parthé, 1987). The highest peak and the deepest hole are located 1.26 Å and 1.18 Å, respectively, from Pd1.

Figures

Fig. 1.
Cubic γ-brass structure of Pd2.28 (1)Zn10.37 (1)Al0.35 (1) in terms of (a) 26-atom clusters in bcc arrangement, with different polyhedra emphasized, and (b) four interpenetrating Pd-centered icosahedra. The color scheme ...

Crystal data

Pd2.28Zn10.37Al0.35Melting point: not measured K
Mr = 929.56Mo Kα radiation, λ = 0.71073 Å
Cubic, I43mCell parameters from 2000 reflections
Hall symbol: I -4 2 3θ = 3.2–34.8°
a = 9.1079 (11) ŵ = 37.46 mm1
V = 755.54 (16) Å3T = 293 K
Z = 4Rectangular, silver
F(000) = 16810.12 × 0.06 × 0.03 mm
Dx = 8.172 Mg m3

Data collection

Stoe/IPDS-II diffractometer339 independent reflections
Radiation source: fine-focus sealed tube337 reflections with I > 2σ(I)
graphiteRint = 0.069
[var phi] and ω scansθmax = 34.8°, θmin = 3.2°
Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2005)h = −14→14
Tmin = 0.054, Tmax = 0.465k = −14→13
11243 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullw = 1/[σ2(Fo2) + (0.0249P)2 + 32.9721P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.027(Δ/σ)max < 0.001
wR(F2) = 0.068Δρmax = 1.05 e Å3
S = 1.02Δρmin = −1.19 e Å3
339 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
22 parametersExtinction coefficient: 0.00118 (16)
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.04 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Pd10.32674 (6)0.32674 (6)0.32674 (6)0.0101 (3)
Zn10.10828 (12)0.10828 (12)0.10828 (12)0.0139 (5)0.924 (17)
Al10.10828 (12)0.10828 (12)0.10828 (12)0.0139 (5)0.076 (17)
Zn20.35776 (15)0.00000.00000.0135 (5)0.91 (3)
Pd20.35776 (15)0.00000.00000.0135 (5)0.09 (3)
Zn30.31076 (9)0.31076 (9)0.03932 (12)0.0162 (3)0.966 (13)
Al30.31076 (9)0.31076 (9)0.03932 (12)0.0162 (3)0.034 (13)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pd10.0101 (3)0.0101 (3)0.0101 (3)0.0007 (2)0.0007 (2)0.0007 (2)
Zn10.0139 (5)0.0139 (5)0.0139 (5)0.0029 (4)0.0029 (4)0.0029 (4)
Al10.0139 (5)0.0139 (5)0.0139 (5)0.0029 (4)0.0029 (4)0.0029 (4)
Zn20.0124 (7)0.0140 (6)0.0140 (6)0.0000.0000.0034 (5)
Pd20.0124 (7)0.0140 (6)0.0140 (6)0.0000.0000.0034 (5)
Zn30.0177 (4)0.0177 (4)0.0132 (5)−0.0026 (3)−0.0028 (2)−0.0028 (2)
Al30.0177 (4)0.0177 (4)0.0132 (5)−0.0026 (3)−0.0028 (2)−0.0028 (2)

Geometric parameters (Å, °)

Pd1—Al3i2.6240 (11)Zn1—Zn32.6826 (17)
Pd1—Zn3i2.6240 (11)Zn2—Pd2vi2.591 (3)
Pd1—Al3ii2.6240 (11)Zn2—Zn2vi2.591 (3)
Pd1—Al3iii2.6240 (11)Zn2—Al3vii2.6115 (12)
Pd1—Zn3ii2.6240 (11)Zn2—Zn3vii2.6115 (12)
Pd1—Zn3iii2.6240 (11)Zn2—Al3viii2.6115 (12)
Pd1—Al3iv2.6259 (12)Zn2—Zn3viii2.6115 (12)
Pd1—Zn3iv2.6259 (12)Zn2—Zn1ix2.6662 (12)
Pd1—Al3v2.6259 (12)Zn2—Al1ix2.6662 (12)
Pd1—Zn3v2.6259 (12)Zn2—Pd1x2.7936 (9)
Pd1—Zn32.6259 (12)Zn2—Pd1xi2.7936 (9)
Zn1—Zn22.6662 (12)Zn3—Pd2i2.6115 (12)
Zn1—Pd2v2.6662 (12)Zn3—Zn2i2.6115 (12)
Zn1—Pd2iv2.6662 (12)Zn3—Pd1x2.6240 (11)
Zn1—Zn2v2.6662 (12)Zn3—Al3xii2.7245 (6)
Zn1—Zn2iv2.6662 (12)Zn3—Al3vii2.7245 (6)
Zn1—Al3v2.6826 (17)Zn3—Zn3xii2.7245 (6)
Zn1—Al3iv2.6826 (17)Zn3—Zn3vii2.7245 (6)
Zn1—Zn3v2.6826 (17)Zn3—Al3i2.7245 (6)
Zn1—Zn3iv2.6826 (17)Zn3—Al3ii2.7245 (6)
Al3i—Pd1—Zn3i0.00 (6)Al3vii—Zn2—Zn3vii0.00 (5)
Al3i—Pd1—Al3ii118.459 (14)Pd2vi—Zn2—Al3viii68.97 (4)
Zn3i—Pd1—Al3ii118.459 (14)Zn2vi—Zn2—Al3viii68.97 (4)
Al3i—Pd1—Al3iii118.459 (14)Al3vii—Zn2—Al3viii137.93 (7)
Zn3i—Pd1—Al3iii118.459 (14)Zn3vii—Zn2—Al3viii137.93 (7)
Al3ii—Pd1—Al3iii118.459 (14)Pd2vi—Zn2—Zn3viii68.97 (4)
Al3i—Pd1—Zn3ii118.459 (14)Zn2vi—Zn2—Zn3viii68.97 (4)
Zn3i—Pd1—Zn3ii118.459 (14)Al3vii—Zn2—Zn3viii137.93 (7)
Al3ii—Pd1—Zn3ii0.00 (6)Zn3vii—Zn2—Zn3viii137.93 (7)
Al3iii—Pd1—Zn3ii118.459 (14)Al3viii—Zn2—Zn3viii0.00 (3)
Al3i—Pd1—Zn3iii118.459 (14)Pd2vi—Zn2—Zn1148.46 (4)
Zn3i—Pd1—Zn3iii118.459 (14)Zn2vi—Zn2—Zn1148.46 (4)
Al3ii—Pd1—Zn3iii118.459 (14)Al3vii—Zn2—Zn1107.81 (3)
Al3iii—Pd1—Zn3iii0.00 (6)Zn3vii—Zn2—Zn1107.81 (3)
Zn3ii—Pd1—Zn3iii118.459 (14)Al3viii—Zn2—Zn1107.81 (3)
Al3i—Pd1—Al3iv62.53 (3)Zn3viii—Zn2—Zn1107.81 (3)
Zn3i—Pd1—Al3iv62.53 (3)Pd2vi—Zn2—Zn1ix148.46 (4)
Al3ii—Pd1—Al3iv133.05 (4)Zn2vi—Zn2—Zn1ix148.46 (4)
Al3iii—Pd1—Al3iv62.53 (3)Al3vii—Zn2—Zn1ix107.81 (3)
Zn3ii—Pd1—Al3iv133.05 (4)Zn3vii—Zn2—Zn1ix107.81 (3)
Zn3iii—Pd1—Al3iv62.53 (3)Al3viii—Zn2—Zn1ix107.81 (3)
Al3i—Pd1—Zn3iv62.53 (3)Zn3viii—Zn2—Zn1ix107.81 (3)
Zn3i—Pd1—Zn3iv62.53 (3)Zn1—Zn2—Zn1ix63.08 (9)
Al3ii—Pd1—Zn3iv133.05 (4)Pd2vi—Zn2—Al1ix148.46 (4)
Al3iii—Pd1—Zn3iv62.53 (3)Zn2vi—Zn2—Al1ix148.46 (4)
Zn3ii—Pd1—Zn3iv133.05 (4)Al3vii—Zn2—Al1ix107.81 (3)
Zn3iii—Pd1—Zn3iv62.53 (3)Zn3vii—Zn2—Al1ix107.81 (3)
Al3iv—Pd1—Zn3iv0.00 (7)Al3viii—Zn2—Al1ix107.81 (3)
Al3i—Pd1—Al3v133.05 (4)Zn3viii—Zn2—Al1ix107.81 (3)
Zn3i—Pd1—Al3v133.05 (4)Zn1—Zn2—Al1ix63.08 (9)
Al3ii—Pd1—Al3v62.53 (3)Zn1ix—Zn2—Al1ix0.00 (6)
Al3iii—Pd1—Al3v62.53 (3)Pd2vi—Zn2—Pd1x126.98 (3)
Zn3ii—Pd1—Al3v62.53 (3)Zn2vi—Zn2—Pd1x126.98 (3)
Zn3iii—Pd1—Al3v62.53 (3)Al3vii—Zn2—Pd1x58.01 (3)
Al3iv—Pd1—Al3v83.48 (4)Zn3vii—Zn2—Pd1x58.01 (3)
Zn3iv—Pd1—Al3v83.48 (4)Al3viii—Zn2—Pd1x164.05 (6)
Al3i—Pd1—Zn3v133.05 (4)Zn3viii—Zn2—Pd1x164.05 (6)
Zn3i—Pd1—Zn3v133.05 (4)Zn1—Zn2—Pd1x59.16 (3)
Al3ii—Pd1—Zn3v62.53 (3)Zn1ix—Zn2—Pd1x59.16 (3)
Al3iii—Pd1—Zn3v62.53 (3)Al1ix—Zn2—Pd1x59.16 (3)
Zn3ii—Pd1—Zn3v62.53 (3)Pd2vi—Zn2—Pd1xi126.98 (3)
Zn3iii—Pd1—Zn3v62.53 (3)Zn2vi—Zn2—Pd1xi126.98 (3)
Al3iv—Pd1—Zn3v83.48 (4)Al3vii—Zn2—Pd1xi164.05 (6)
Zn3iv—Pd1—Zn3v83.48 (4)Zn3vii—Zn2—Pd1xi164.05 (6)
Al3v—Pd1—Zn3v0.00 (7)Al3viii—Zn2—Pd1xi58.01 (3)
Al3i—Pd1—Zn362.53 (3)Zn3viii—Zn2—Pd1xi58.01 (3)
Zn3i—Pd1—Zn362.53 (3)Zn1—Zn2—Pd1xi59.16 (3)
Al3ii—Pd1—Zn362.53 (3)Zn1ix—Zn2—Pd1xi59.16 (3)
Al3iii—Pd1—Zn3133.05 (4)Al1ix—Zn2—Pd1xi59.16 (3)
Zn3ii—Pd1—Zn362.53 (3)Pd1x—Zn2—Pd1xi106.04 (6)
Zn3iii—Pd1—Zn3133.05 (4)Pd2i—Zn3—Zn2i0.00 (5)
Al3iv—Pd1—Zn383.48 (4)Pd2i—Zn3—Pd1x153.49 (6)
Zn3iv—Pd1—Zn383.48 (4)Zn2i—Zn3—Pd1x153.49 (6)
Al3v—Pd1—Zn383.48 (4)Pd2i—Zn3—Pd164.47 (4)
Zn3v—Pd1—Zn383.48 (4)Zn2i—Zn3—Pd164.47 (4)
Zn2—Zn1—Pd2v119.582 (10)Pd1x—Zn3—Pd1142.04 (5)
Zn2—Zn1—Pd2iv119.582 (10)Pd2i—Zn3—Zn1145.42 (6)
Pd2v—Zn1—Pd2iv119.582 (10)Zn2i—Zn3—Zn1145.42 (6)
Zn2—Zn1—Zn2v119.582 (10)Pd1x—Zn3—Zn161.09 (5)
Pd2v—Zn1—Zn2v0.0Pd1—Zn3—Zn180.96 (5)
Pd2iv—Zn1—Zn2v119.582 (10)Pd2i—Zn3—Al3xii102.22 (4)
Zn2—Zn1—Zn2iv119.582 (10)Zn2i—Zn3—Al3xii102.22 (4)
Pd2v—Zn1—Zn2iv119.582 (10)Pd1x—Zn3—Al3xii58.77 (4)
Pd2iv—Zn1—Zn2iv0.0Pd1—Zn3—Al3xii139.15 (3)
Zn2v—Zn1—Zn2iv119.582 (10)Zn1—Zn3—Al3xii104.13 (5)
Zn2—Zn1—Al3v65.28 (2)Pd2i—Zn3—Al3vii102.22 (4)
Pd2v—Zn1—Al3v65.28 (2)Zn2i—Zn3—Al3vii102.22 (4)
Pd2iv—Zn1—Al3v135.08 (8)Pd1x—Zn3—Al3vii58.77 (4)
Zn2v—Zn1—Al3v65.28 (2)Pd1—Zn3—Al3vii139.15 (3)
Zn2iv—Zn1—Al3v135.08 (8)Zn1—Zn3—Al3vii104.13 (5)
Zn2—Zn1—Al3iv135.08 (8)Al3xii—Zn3—Al3vii79.83 (8)
Pd2v—Zn1—Al3iv65.28 (2)Pd2i—Zn3—Zn3xii102.22 (4)
Pd2iv—Zn1—Al3iv65.28 (2)Zn2i—Zn3—Zn3xii102.22 (4)
Zn2v—Zn1—Al3iv65.28 (2)Pd1x—Zn3—Zn3xii58.77 (4)
Zn2iv—Zn1—Al3iv65.28 (2)Pd1—Zn3—Zn3xii139.15 (3)
Al3v—Zn1—Al3iv81.33 (6)Zn1—Zn3—Zn3xii104.13 (5)
Zn2—Zn1—Zn3v65.28 (2)Al3xii—Zn3—Zn3xii0.00 (6)
Pd2v—Zn1—Zn3v65.28 (2)Al3vii—Zn3—Zn3xii79.83 (8)
Pd2iv—Zn1—Zn3v135.08 (8)Pd2i—Zn3—Zn3vii102.22 (4)
Zn2v—Zn1—Zn3v65.28 (2)Zn2i—Zn3—Zn3vii102.22 (4)
Zn2iv—Zn1—Zn3v135.08 (8)Pd1x—Zn3—Zn3vii58.77 (4)
Al3v—Zn1—Zn3v0.00 (6)Pd1—Zn3—Zn3vii139.15 (3)
Al3iv—Zn1—Zn3v81.33 (6)Zn1—Zn3—Zn3vii104.13 (5)
Zn2—Zn1—Zn3iv135.08 (8)Al3xii—Zn3—Zn3vii79.83 (8)
Pd2v—Zn1—Zn3iv65.28 (2)Al3vii—Zn3—Zn3vii0.00 (4)
Pd2iv—Zn1—Zn3iv65.28 (2)Zn3xii—Zn3—Zn3vii79.83 (8)
Zn2v—Zn1—Zn3iv65.28 (2)Pd2i—Zn3—Al3i65.41 (4)
Zn2iv—Zn1—Zn3iv65.28 (2)Zn2i—Zn3—Al3i65.41 (4)
Al3v—Zn1—Zn3iv81.33 (6)Pd1x—Zn3—Al3i122.72 (4)
Al3iv—Zn1—Zn3iv0.00 (6)Pd1—Zn3—Al3i58.70 (3)
Zn3v—Zn1—Zn3iv81.33 (6)Zn1—Zn3—Al3i97.39 (5)
Zn2—Zn1—Zn365.28 (2)Al3xii—Zn3—Al3i80.50 (3)
Pd2v—Zn1—Zn3135.08 (8)Al3vii—Zn3—Al3i153.76 (7)
Pd2iv—Zn1—Zn365.28 (2)Zn3xii—Zn3—Al3i80.50 (3)
Zn2v—Zn1—Zn3135.08 (8)Zn3vii—Zn3—Al3i153.76 (7)
Zn2iv—Zn1—Zn365.28 (2)Pd2i—Zn3—Al3ii65.41 (4)
Al3v—Zn1—Zn381.33 (6)Zn2i—Zn3—Al3ii65.41 (4)
Al3iv—Zn1—Zn381.33 (6)Pd1x—Zn3—Al3ii122.72 (4)
Zn3v—Zn1—Zn381.33 (6)Pd1—Zn3—Al3ii58.70 (3)
Zn3iv—Zn1—Zn381.33 (6)Zn1—Zn3—Al3ii97.39 (5)
Pd2vi—Zn2—Zn2vi0.0Al3xii—Zn3—Al3ii153.76 (7)
Pd2vi—Zn2—Al3vii68.97 (4)Al3vii—Zn3—Al3ii80.50 (3)
Zn2vi—Zn2—Al3vii68.97 (4)Zn3xii—Zn3—Al3ii153.76 (7)
Pd2vi—Zn2—Zn3vii68.97 (4)Zn3vii—Zn3—Al3ii80.50 (3)
Zn2vi—Zn2—Zn3vii68.97 (4)Al3i—Zn3—Al3ii111.69 (7)

Symmetry codes: (i) −y+1/2, z+1/2, −x+1/2; (ii) z+1/2, −x+1/2, −y+1/2; (iii) −x+1/2, −y+1/2, z+1/2; (iv) z, x, y; (v) y, z, x; (vi) −x+1, −y, z; (vii) −z+1/2, −x+1/2, y−1/2; (viii) −z+1/2, x−1/2, −y+1/2; (ix) x, −y, −z; (x) −x+1/2, −y+1/2, z−1/2; (xi) −x+1/2, y−1/2, −z+1/2; (xii) −y+1/2, −z+1/2, x−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2090).

References

  • Arnberg, L. & Westman, S. (1972). Acta Chem. Scand.26, 513–517.
  • Brandenburg, K. (2009). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Edström, V.-A. & Westman, S. (1969). Acta Chem. Scand.23, 279–285.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst.20, 139–143.
  • Gourdon, O. & Miller, G. J. (2006). Chem. Mater.18, 1848–1856.
  • Gross, N., Kotzyba, G., Künnen, B. & Jeitschko, W. (2001). Z. Anorg. Allg. Chem.627, 155–163.
  • Harbrecht, B., Thimmaiah, S., Armbrüster, M., Pietzonka, C. & Lee, S. (2002). Z. Anorg. Allg. Chem.628, 2744–2749.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2005). X-SHAPE and X-RED Stoe & Cie, Darmstadt, Germany.
  • Stoe & Cie (2009). X-AREA Stoe & Cie, Darmstadt, Germany.
  • Thimmaiah, S. & Miller, G. J. (2010). Chem. Eur. J. Accepted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography