PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o468.
Published online 2010 January 30. doi:  10.1107/S1600536810002862
PMCID: PMC2979894

1-(3,4-Dichloro­benz­yl)-3-methyl­quinolin-1-ium 7,7,8,8-tetra­cyano­quinodimethanide

Abstract

In the title salt, C17H14Cl2N+·C12H4N4 , cations and anions stack along the a axis into segregated columns by π–π stacking inter­actions, with alternating centroid–centroid separations of 3.5957 (7) and 3.7525 (7) Å for the cation column and 3.4252 (6) and 4.1578 (7) Å for the anion column. In the cation, the dihedral angle between the benzene ring and the quinoline ring system is 76.35 (4)°. The crystal packing is stabilized by inter­columnar C—H(...)N hydrogen bonds.

Related literature

For general background to the planar organic mol­ecule 7,7,8,8-tetra­cyano­quinodimethane, see: Alonso et al. (2005 [triangle]); Madalan et al. (2002 [triangle]); Liu et al. (2008 [triangle]). For the role played by the size and shape of the counter-cations in determining the ground-state properties of the resulting materials, see: Ren, Meng et al. (2002 [triangle]); Ren et al. (2003 [triangle]); Ren, Chen et al. (2002 [triangle]). For related structures, see: Liu et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o468-scheme1.jpg

Experimental

Crystal data

  • C17H14Cl2N+·C12H4N4
  • M r = 507.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o468-efi1.jpg
  • a = 7.0795 (14) Å
  • b = 18.704 (4) Å
  • c = 18.608 (4) Å
  • β = 95.286 (2)°
  • V = 2453.4 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 293 K
  • 0.26 × 0.16 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.928, T max = 0.966
  • 18184 measured reflections
  • 4580 independent reflections
  • 3680 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.101
  • S = 1.03
  • 4580 reflections
  • 326 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002862/rz2411sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002862/rz2411Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20971004), the Natural Science Foundation for Outstanding Scholars of Anhui Province, China (No. 044-J-04011) and the Outstanding Youth Foundation of the Education Commission of Anhui Province, China (No. 2010SQRL108ZD).

supplementary crystallographic information

Comment

The search for new compounds with promising electronic, and magnetic properties has prompted chemists to combine different spin carriers within the same molecular or supramolecular entity (Madalan et al., 2002). One of the most extensively used radicals in these studies has been the planar organic molecule 7,7,8,8-tetracyanoquinodimethane, [C8H4(CN)4], TCNQ, since it shows a low reduction potential which makes it a suitable acceptor in charge-transfer processes. Another significant feature of this acceptor is its tendency to overlap its π-delocalized system with those of neighbouring molecules to form stacks with different degrees of electron delocalization (Alonso et al., 2005). Previous work has shown that molecular stacks of charge-transfer salts exhibit low-dimensional properties in some cases, which have intriguing anisotropic magnetic, electronic and structural characteristics (Ren, Meng et al., 2002; Ren et al., 2003; Liu et al., 2005). Furthermore, the size and shape of the counter-cations play an important role in determining the ground-state properties of the resulting materials (Ren, Chen et al., 2002; Liu et al., 2008). As a result, charge-transfer salts consisting of the TCNQ anion and benzylpyridinium cations could offer the possibility of systematically studying the fundamental relationship between the stack structure and the size and steric properties of substituent groups. In this communication, we report the crystal structure of the title complex.

The asymmetric unit of the title compound contains one (C17H14Cl2N)+ cation and one [C8H4(CN)4]- anion (Fig. 1). Anions and cations stack into completely segregated columns along the a axis, as illustrated in Fig. 2. Within an anion column, the strongly bound unit [(TCNQ)2]2- is formed by π–π stacking interactions with a centroid-to-centroid distance of 3.4252 (6) Å, and adjacent units are displaced relative to each other along the direction of the shorter molecular axis of TCNQ with centroid-to-centroid separations of 4.1578 (7) Å (Fig. 3). Stacking within the cation column is also governed by π–π stacking interactions with alternating centroid-to-centroid distances 3.5957 (7) and 3.7525 (7) Å. The (C17H14Cl2N)+ cation assumes a Λ-shaped conformation, with a dihedral angle between the benzene ring and the quinoline ring system of 76.35 (4)°. The crystal packing is stabilized by C—H···N intercolumar linkages (Table 1).

Experimental

1-(3,4-Dichlorobenzyl)-3-methylquinolin-1-ium iodide was prepared by the direct combination of 1:1 molar equivalents of 1-(3,4-dichlorobenzyl)-3-methylquinolin-1-ium chloride and NaI in a warm solution in acetone at 313 K. A white precipitate was formed (NaCl), which was filtered off, and a white microcrystalline product was obtained by evaporating the filtrate. 1:1 Molar equivalents of 1-(3,4-dichlorobenzyl)-3-methylquinolin-1-ium iodide and 7,7,8,8-tetracyanoquinodimethane (TCNQ) were mixed directly in methanol, and the mixture was refluxed for 12 h. The black microcrystalline product which formed was filtered off, washed with MeOH and dried in vacuo. Single crystals of the title compound suitable for X-ray structure analysis were obtained by diffusing diethyl ether into a MeCN solution.

Refinement

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The asymmetric unit of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.
Fig. 2.
Packing diagram of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.
Fig. 3.
A side-view of the one-dimensional anion column in the title compound. Centroid-to-centroid distances (dashed lines) are in Å. Hydrogen atoms are omitted for clarity.

Crystal data

C17H14Cl2N+·C12H4N4F(000) = 1044
Mr = 507.38Dx = 1.374 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7732 reflections
a = 7.0795 (14) Åθ = 2.4–27.6°
b = 18.704 (4) ŵ = 0.29 mm1
c = 18.608 (4) ÅT = 293 K
β = 95.286 (2)°Block, black
V = 2453.4 (9) Å30.26 × 0.16 × 0.12 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer4580 independent reflections
Radiation source: sealed tube3680 reflections with I > 2σ(I)
graphiteRint = 0.027
phi and ω scansθmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −8→8
Tmin = 0.928, Tmax = 0.966k = −22→22
18184 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0415P)2 + 0.9033P] where P = (Fo2 + 2Fc2)/3
4580 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N50.29919 (19)0.47148 (7)0.39305 (7)0.0366 (3)
N1−0.0533 (2)0.39215 (9)0.75827 (9)0.0550 (4)
N30.4950 (3)0.53355 (8)1.21413 (9)0.0536 (4)
N40.3739 (3)0.70369 (9)1.04907 (11)0.0700 (5)
N20.0918 (3)0.22596 (9)0.91236 (10)0.0730 (6)
Cl1−0.08219 (9)0.19603 (3)0.25897 (3)0.06871 (18)
Cl2−0.40722 (9)0.30060 (3)0.19589 (4)0.0817 (2)
C40.1467 (2)0.41286 (9)0.93789 (9)0.0392 (4)
C50.1399 (2)0.48648 (9)0.92029 (9)0.0402 (4)
H50.08520.50040.87510.048*
C70.2918 (2)0.51917 (9)1.03746 (9)0.0368 (4)
C280.2600 (2)0.45003 (9)0.46162 (9)0.0366 (4)
C170.1152 (3)0.31440 (9)0.29677 (9)0.0433 (4)
H170.20950.28340.31580.052*
C120.4384 (3)0.55209 (9)1.15743 (10)0.0407 (4)
C200.3127 (2)0.54043 (9)0.37601 (9)0.0398 (4)
H200.33860.55240.32940.048*
C230.2461 (2)0.50382 (10)0.51399 (9)0.0405 (4)
C80.2976 (2)0.44532 (9)1.05546 (9)0.0408 (4)
H80.34980.43151.10100.049*
C210.2898 (2)0.59540 (9)0.42521 (10)0.0432 (4)
C10.0043 (3)0.37834 (9)0.81630 (10)0.0427 (4)
C100.3650 (2)0.57206 (9)1.08701 (9)0.0386 (4)
C60.2107 (2)0.53737 (9)0.96747 (9)0.0386 (4)
H60.20590.58510.95350.046*
C160.1436 (2)0.38756 (9)0.30184 (9)0.0378 (4)
C270.2366 (2)0.37768 (9)0.47945 (10)0.0435 (4)
H270.24300.34230.44460.052*
C190.3282 (2)0.41725 (9)0.33621 (9)0.0407 (4)
H19A0.40480.37840.35750.049*
H19B0.39720.43910.29920.049*
C18−0.0524 (3)0.28720 (9)0.26362 (10)0.0451 (4)
C14−0.1659 (3)0.40587 (10)0.24047 (10)0.0497 (5)
H14−0.26060.43680.22160.060*
C220.2612 (2)0.57597 (10)0.49425 (10)0.0453 (4)
H220.25140.61130.52890.054*
C110.3706 (3)0.64519 (10)1.06735 (10)0.0454 (4)
C90.2293 (3)0.39456 (9)1.00816 (9)0.0430 (4)
H90.23650.34671.02180.052*
C13−0.1939 (3)0.33322 (10)0.23607 (10)0.0480 (5)
C20.0867 (3)0.28632 (10)0.90231 (10)0.0506 (5)
C30.0775 (3)0.36059 (9)0.88739 (9)0.0434 (4)
C240.2156 (3)0.48249 (12)0.58499 (10)0.0517 (5)
H240.20920.51690.62070.062*
C150.0019 (3)0.43294 (9)0.27275 (9)0.0450 (4)
H150.02020.48210.27510.054*
C250.1956 (3)0.41215 (12)0.60159 (10)0.0554 (5)
H250.17590.39880.64850.066*
C260.2045 (3)0.35999 (11)0.54832 (10)0.0523 (5)
H260.18820.31220.56010.063*
C290.2965 (3)0.67200 (10)0.40124 (12)0.0608 (6)
H29A0.24610.70220.43660.091*
H29B0.22220.67750.35580.091*
H29C0.42560.68530.39610.091*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N50.0368 (8)0.0358 (8)0.0364 (7)−0.0013 (6)−0.0005 (6)−0.0012 (6)
N10.0675 (11)0.0504 (10)0.0451 (10)0.0036 (8)−0.0050 (8)−0.0007 (7)
N30.0688 (11)0.0444 (9)0.0465 (9)0.0067 (8)0.0004 (8)0.0009 (7)
N40.0915 (15)0.0396 (10)0.0773 (13)0.0033 (9)−0.0012 (11)0.0034 (9)
N20.1053 (16)0.0408 (10)0.0680 (12)−0.0153 (10)−0.0177 (11)0.0083 (9)
Cl10.0850 (4)0.0364 (3)0.0817 (4)−0.0103 (2)−0.0086 (3)−0.0031 (2)
Cl20.0627 (4)0.0787 (4)0.0976 (5)−0.0133 (3)−0.0252 (3)−0.0025 (3)
C40.0411 (9)0.0382 (9)0.0382 (9)−0.0040 (7)0.0033 (7)0.0021 (7)
C50.0450 (10)0.0390 (9)0.0363 (9)0.0000 (8)0.0018 (7)0.0061 (7)
C70.0342 (9)0.0363 (9)0.0404 (9)0.0004 (7)0.0054 (7)0.0012 (7)
C280.0310 (9)0.0427 (9)0.0353 (9)−0.0002 (7)−0.0012 (7)0.0009 (7)
C170.0523 (11)0.0343 (9)0.0423 (10)0.0044 (8)−0.0010 (8)0.0025 (7)
C120.0442 (10)0.0334 (9)0.0447 (10)0.0002 (7)0.0054 (8)−0.0046 (8)
C200.0396 (9)0.0380 (9)0.0404 (9)−0.0035 (7)−0.0044 (7)0.0026 (7)
C230.0328 (9)0.0492 (10)0.0384 (9)−0.0004 (7)−0.0030 (7)−0.0046 (8)
C80.0460 (10)0.0397 (9)0.0359 (9)−0.0007 (8)−0.0010 (7)0.0052 (7)
C210.0403 (10)0.0379 (9)0.0489 (10)−0.0017 (7)−0.0092 (8)−0.0015 (8)
C10.0473 (10)0.0361 (9)0.0441 (11)−0.0029 (8)0.0015 (8)−0.0026 (8)
C100.0391 (9)0.0361 (9)0.0407 (9)0.0011 (7)0.0034 (7)−0.0001 (7)
C60.0416 (9)0.0333 (9)0.0410 (9)0.0004 (7)0.0046 (7)0.0058 (7)
C160.0459 (10)0.0363 (9)0.0314 (8)0.0009 (7)0.0037 (7)−0.0006 (7)
C270.0433 (10)0.0419 (10)0.0446 (10)−0.0002 (8)0.0008 (8)0.0021 (8)
C190.0451 (10)0.0389 (9)0.0385 (9)0.0009 (8)0.0059 (8)−0.0023 (7)
C180.0584 (11)0.0331 (9)0.0430 (10)−0.0028 (8)0.0006 (8)−0.0006 (7)
C140.0530 (11)0.0450 (11)0.0497 (11)0.0096 (9)−0.0031 (9)0.0058 (8)
C220.0395 (10)0.0472 (11)0.0476 (11)0.0007 (8)−0.0056 (8)−0.0137 (8)
C110.0501 (11)0.0392 (10)0.0461 (10)0.0029 (8)−0.0004 (8)−0.0043 (8)
C90.0545 (11)0.0326 (9)0.0411 (10)−0.0022 (8)0.0004 (8)0.0063 (7)
C130.0489 (11)0.0495 (11)0.0440 (10)−0.0041 (9)−0.0034 (8)−0.0010 (8)
C20.0652 (13)0.0429 (11)0.0415 (10)−0.0122 (9)−0.0072 (9)0.0021 (8)
C30.0531 (11)0.0378 (9)0.0385 (9)−0.0062 (8)0.0004 (8)0.0039 (7)
C240.0445 (11)0.0706 (14)0.0395 (10)0.0008 (9)0.0004 (8)−0.0085 (9)
C150.0563 (11)0.0333 (9)0.0448 (10)0.0022 (8)0.0005 (8)0.0018 (8)
C250.0482 (11)0.0777 (15)0.0402 (10)0.0005 (10)0.0042 (8)0.0125 (10)
C260.0477 (11)0.0560 (12)0.0530 (12)0.0001 (9)0.0040 (9)0.0145 (9)
C290.0718 (14)0.0380 (10)0.0697 (14)−0.0017 (10)−0.0090 (11)−0.0013 (10)

Geometric parameters (Å, °)

N5—C201.334 (2)C8—H80.9300
N5—C281.390 (2)C21—C221.368 (3)
N5—C191.493 (2)C21—C291.502 (3)
N1—C11.148 (2)C1—C31.415 (2)
N3—C121.147 (2)C10—C111.417 (2)
N4—C111.147 (2)C6—H60.9300
N2—C21.144 (2)C16—C151.386 (2)
Cl1—C181.7195 (18)C16—C191.507 (2)
Cl2—C131.7334 (19)C27—C261.363 (3)
C4—C31.412 (2)C27—H270.9300
C4—C51.415 (2)C19—H19A0.9700
C4—C91.424 (2)C19—H19B0.9700
C5—C61.359 (2)C18—C131.383 (3)
C5—H50.9300C14—C131.374 (3)
C7—C61.416 (2)C14—C151.377 (3)
C7—C101.418 (2)C14—H140.9300
C7—C81.421 (2)C22—H220.9300
C28—C271.407 (2)C9—H90.9300
C28—C231.410 (2)C2—C31.417 (3)
C17—C161.385 (2)C24—C251.362 (3)
C17—C181.382 (3)C24—H240.9300
C17—H170.9300C15—H150.9300
C12—C101.415 (2)C25—C261.396 (3)
C20—C211.396 (2)C25—H250.9300
C20—H200.9300C26—H260.9300
C23—C221.405 (3)C29—H29A0.9600
C23—C241.416 (3)C29—H29B0.9600
C8—C91.353 (2)C29—H29C0.9600
C20—N5—C28121.49 (14)N5—C19—C16112.36 (14)
C20—N5—C19118.10 (14)N5—C19—H19A109.1
C28—N5—C19120.42 (14)C16—C19—H19A109.1
C3—C4—C5121.14 (15)N5—C19—H19B109.1
C3—C4—C9122.19 (15)C16—C19—H19B109.1
C5—C4—C9116.67 (15)H19A—C19—H19B107.9
C6—C5—C4121.95 (16)C13—C18—C17119.92 (17)
C6—C5—H5119.0C13—C18—Cl1121.14 (15)
C4—C5—H5119.0C17—C18—Cl1118.93 (14)
C6—C7—C10121.57 (15)C13—C14—C15120.20 (17)
C6—C7—C8116.82 (15)C13—C14—H14119.9
C10—C7—C8121.61 (15)C15—C14—H14119.9
N5—C28—C27122.15 (15)C21—C22—C23121.46 (16)
N5—C28—C23117.45 (15)C21—C22—H22119.3
C27—C28—C23120.40 (16)C23—C22—H22119.3
C16—C17—C18120.48 (16)N4—C11—C10177.7 (2)
C16—C17—H17119.8C8—C9—C4121.36 (16)
C18—C17—H17119.8C8—C9—H9119.3
N3—C12—C10177.57 (19)C4—C9—H9119.3
N5—C20—C21122.75 (17)C14—C13—C18119.85 (17)
N5—C20—H20118.6C14—C13—Cl2119.25 (15)
C21—C20—H20118.6C18—C13—Cl2120.89 (15)
C22—C23—C28119.52 (16)N2—C2—C3178.0 (2)
C22—C23—C24122.44 (17)C4—C3—C1122.31 (16)
C28—C23—C24118.04 (17)C4—C3—C2122.77 (16)
C9—C8—C7121.86 (16)C1—C3—C2114.80 (15)
C9—C8—H8119.1C25—C24—C23120.81 (18)
C7—C8—H8119.1C25—C24—H24119.6
C22—C21—C20117.16 (16)C23—C24—H24119.6
C22—C21—C29122.93 (17)C14—C15—C16120.64 (17)
C20—C21—C29119.91 (17)C14—C15—H15119.7
N1—C1—C3179.1 (2)C16—C15—H15119.7
C12—C10—C7119.95 (15)C24—C25—C26120.09 (18)
C12—C10—C11118.51 (15)C24—C25—H25120.0
C7—C10—C11121.52 (15)C26—C25—H25120.0
C5—C6—C7121.33 (15)C27—C26—C25121.35 (19)
C5—C6—H6119.3C27—C26—H26119.3
C7—C6—H6119.3C25—C26—H26119.3
C17—C16—C15118.89 (16)C21—C29—H29A109.5
C17—C16—C19120.51 (15)C21—C29—H29B109.5
C15—C16—C19120.56 (15)H29A—C29—H29B109.5
C26—C27—C28119.26 (18)C21—C29—H29C109.5
C26—C27—H27120.4H29A—C29—H29C109.5
C28—C27—H27120.4H29B—C29—H29C109.5
C3—C4—C5—C6−178.09 (17)C17—C16—C19—N5−128.65 (17)
C9—C4—C5—C60.9 (3)C15—C16—C19—N553.4 (2)
C20—N5—C28—C27177.01 (15)C16—C17—C18—C13−0.8 (3)
C19—N5—C28—C27−3.2 (2)C16—C17—C18—Cl1−179.64 (14)
C20—N5—C28—C23−3.7 (2)C20—C21—C22—C23−3.1 (3)
C19—N5—C28—C23176.08 (14)C29—C21—C22—C23176.76 (17)
C28—N5—C20—C210.3 (2)C28—C23—C22—C21−0.2 (3)
C19—N5—C20—C21−179.46 (15)C24—C23—C22—C21−179.69 (16)
N5—C28—C23—C223.6 (2)C7—C8—C9—C4−0.4 (3)
C27—C28—C23—C22−177.06 (16)C3—C4—C9—C8178.97 (18)
N5—C28—C23—C24−176.92 (15)C5—C4—C9—C80.0 (3)
C27—C28—C23—C242.4 (2)C15—C14—C13—C18−0.5 (3)
C6—C7—C8—C90.1 (3)C15—C14—C13—Cl2179.42 (15)
C10—C7—C8—C9−179.46 (17)C17—C18—C13—C141.3 (3)
N5—C20—C21—C223.1 (3)Cl1—C18—C13—C14−179.92 (15)
N5—C20—C21—C29−176.72 (16)C17—C18—C13—Cl2−178.67 (15)
C6—C7—C10—C12177.58 (16)Cl1—C18—C13—Cl20.1 (2)
C8—C7—C10—C12−2.9 (3)C5—C4—C3—C12.3 (3)
C6—C7—C10—C11−3.8 (3)C9—C4—C3—C1−176.66 (18)
C8—C7—C10—C11175.72 (17)C5—C4—C3—C2178.20 (18)
C4—C5—C6—C7−1.3 (3)C9—C4—C3—C2−0.7 (3)
C10—C7—C6—C5−179.66 (16)C22—C23—C24—C25177.83 (18)
C8—C7—C6—C50.8 (3)C28—C23—C24—C25−1.6 (3)
C18—C17—C16—C15−0.4 (3)C13—C14—C15—C16−0.7 (3)
C18—C17—C16—C19−178.37 (16)C17—C16—C15—C141.1 (3)
N5—C28—C27—C26177.88 (16)C19—C16—C15—C14179.13 (17)
C23—C28—C27—C26−1.4 (3)C23—C24—C25—C26−0.1 (3)
C20—N5—C19—C16−100.94 (17)C28—C27—C26—C25−0.4 (3)
C28—N5—C19—C1679.31 (18)C24—C25—C26—C271.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C20—H20···N3i0.932.533.387 (3)154
C19—H19B···N3i0.972.513.432 (2)158
C14—H14···N3ii0.932.503.390 (3)161
C15—H15···N1iii0.932.453.348 (2)163

Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z−1; (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2411).

References

  • Alonso, C., Ballester, L., Gutiérrez, A., Perpiñán, M. F., Sánchez, A. E. & Azcondo, M. T. (2005). Eur. J. Inorg. Chem. pp. 486–495.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, G. X., Ren, X. M., Kremer, P. K. & Meng, Q. J. (2005). J. Mol. Struct.743, 125–133.
  • Liu, G. X., Xu, H., Ren, X. M. & Sun, W. Y. (2008). CrystEngComm, 10, 1574–1582.
  • Madalan, A. M., Roesky, H. W., Andruh, M., Noltemeyerb, M. & Stanicac, N. (2002). Chem. Commun. pp. 1638–1639. [PubMed]
  • Ren, X. M., Chen, Y. C., He, C. & Gao, S. (2002). J. Chem. Soc. Dalton Trans. pp. 3915–3918.
  • Ren, X. M., Ma, J., Lu, C. S., Yang, S. Z., Meng, Q. J. & &Wu, P. H. (2003). Dalton Trans. pp. 1345–1351.
  • Ren, X. M., Meng, Q. J., Song, Y., Lu, C. S., Hu, C. J. & Chen, X. Y. (2002). Inorg. Chem.41, 5686–5692. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography